
Quick reference manual

OpenFLUID-Engine 1.4.0

Fabre, J.C.,
and the modelling
group at LISAH

Contents

Foreword 5

1 File formats 7

1.1 Spatial domain de�nition (*.ddef.xml) . 7

1.2 Flux model de�nition (model.xml) . 8

1.3 Spatial domain input data (*.ddata.xml) . 9

1.4 Discrete events (*.events.xml) . 10

1.5 Run con�guration(run.xml) . 11

1.6 Outputs con�guration(output.xml) . 12

2 Usage information 13

2.1 Installation . 13

2.2 Input dataset . 13

2.3 Engine sequence . 14

2.4 Run the simulation . 15

2.5 Explore the results . 16

3 Appendix 17

3.1 Command line options . 17

3.2 Date-time formats used in outputs con�guration 17

3.3 Useful links . 19

3

Foreword

This quick reference manual will help you to prepare and run simulations using OpenFLUID-engine.

It will not explain the concepts behind the software, nor the scienti�c approaches in landscape �uxes

modelling and simulation.

Typographic conventions

The "to note" informations are emphasized like this:

"to note" information with blue background...

The source code examples are emphasized like this:

Source code, with grey background and fixed size font

The "warning" informations are emphasized like this:

"warning" informations with red background...

5

Chapter 1

File formats

This part of this manual describes the �le formats. Refer to the "Usage" part of this manual to run

the simulation.

1.1 Spatial domain de�nition (*.ddef.xml)

The spatial domain is de�ned by a set of spatial units that are connected each others. These spatial

units are de�ned by a numerical identi�er (ID) and a class. They also include information about the

preocessing order of the unit in the class. Each unit can be connected to zero or many other units

from the same or a di�erent unit class.

This information is de�ned through XML �les that must end with the su�x .ddef.xml. All the �les

in the dataset named using this su�x will be read and considered as spatial domain de�nition �les,

and must be structured following these rules:

• These �les are XML �les

• The root tag must be <openfluid>

• Inside the <openfluid> tag, there must be a <domain> tag

• Inside the <domain> tag, there must be a <definition> tag

• Inside the <definition> tag, there must be a set of <unit> tags

• Each <unit> tag must bring an <ID> attribute giving the identi�er of the unit, a <class>

attribute giving the class of the unit, a <pcsorder> attribute giving the process order in the

class of the unit <class>

• Each <unit> tag may include zero or many <to> tags giving the outgoing connections to other

units. Each <to> tag must bring an <ID> attribute giving the identi�er of the connected unit

and a <class> attribute giving the class of the connected unit

7

8 CHAPTER 1. FILE FORMATS

<?xml version="1.0" standalone="yes"?>

<openfluid>

<domain>

<definition>

<unit class="SU" ID="1" pcsorder="1">

<to class="SU" ID="2" />

</unit>

<unit class="SU" ID="2" pcsorder="2">

<to class="RS" ID="1" />

</unit>

<unit class="SU" ID="3" pcsorder="1">

<to class="RS" ID="2" />

</unit>

<unit class="RS" ID="1" pcsorder="1">

<to class="RS" ID="2" />

</unit>

<unit class="RS" ID="2" pcsorder="1">

</unit>

</definition>

</domain>

</openfluid>

1.2 Flux model de�nition (model.xml)

The �ux model is de�ned by an ordered set of simulations functions that will be plugged to the

OpenFLUID-Engine kernel. It de�nes the model for the simulation.

The �ux model must be de�ned in a �le named model.xml, and must be structured following these

rules:

• The model.xml �le is an XML �le

• The root tag must be <openfluid>

• Inside the <openfluid> tag, there must be a <model> tag

• Inside the <domain> tag, there must be a set of <function> tags

• Each <function> tag must bring a <fileID> attr

• ibute giving the identi�er of the simulation function; the value of the <fileID> attribute must

match the �le name (without extension) of a reachable and pluggable simulation function.

• Each <function> tag may include zero to many <param> tags giving parameters to the func-

tion. Each <param> tag must bring a <name> attribute giving the name of the parameter and a

<value> attribute giving the value of the parameter. These parameters can be scalar or vector

of integer values, �oating point values, string values. In case of vector, the values of the vector

are separated by a ; (semicolon).

The order of the simulation functions in the model.xml is very important : the same order will be

used for executions on the same time step

1.3. SPATIAL DOMAIN INPUT DATA (*.DDATA.XML) 9

<?xml version="1.0" standalone="yes"?>

<openfluid>

<model>

<function fileID="water.atm-surf.rain-su.files" />

<function fileID="water.surf-uz.runoff-infiltration.mseytoux" >

<param name="resstep" value="0.000005" />

</function>

<function fileID="water.surf.transfer-su.hayami">

<param name="maxsteps" value="100" />

<param name="meancel" value="0.045" />

<param name="meansigma" value="500" />

</function>

</model>

</openfluid>

1.3 Spatial domain input data (*.ddata.xml)

The spatial domain input data are static data brought by units, usually properties and initial conditions

for each unit.

This information is de�ned through XML �les that must end with the su�x .ddata.xml. All the

�les in the dataset named using this su�x will be read and considered as spatial domain input data

�les, and must be structured following these rules:

• These �les are XML �les

• The root tag must be <openfluid>

• Inside the <openfluid> tag, there must be a <domain> tag

• Inside the <domain> tag, there must be one (and only one) <inputdata> tag

• The <inputdata> tag must bring a <unitclass> attribute giving the unit class to which input

data must be attached

• Inside the <inputdata> tag, there must be one (and only one) <columns> tag

• The <columns> tag must bring a <order> attribute de�ning the order of the columns in the

<data> tag.

• Inside the <inputdata> tag, there must be one (and only one) <data> tag containing the

input data as row-column text. As a rule, the �rst column is the ID of the unit in the class

given through the <inputdata> tag, the following columns are values following the column

order given through the <columns> tag.

10 CHAPTER 1. FILE FORMATS

<?xml version="1.0" standalone="yes"?>

<openfluid>

<domain>

<inputdata unitclass="SU">

<columns order="ks;hc;betaMS;thetares;thetasat;nmanning" />

<data>

1 0.000001 0.1 1.3 0.02 0.36 0.05

2 0.000001 0.1 1.3 0.02 0.36 0.05

3 0.000001 0.1 1.3 0.02 0.36 0.05

4 0.000001 0.1 1.3 0.02 0.36 0.05

5 0.000001 0.1 1.3 0.02 0.36 0.05

6 0.000001 0.1 1.3 0.02 0.36 0.05

7 0.000001 0.1 1.3 0.02 0.36 0.05

</data>

</inputdata>

</domain>

</openfluid>

1.4 Discrete events (*.events.xml)

The discrete events are events occuring on units, and that can be processed by simulation functions.

They are de�ned through calendars in XML �les that must end with the su�x .events.xml. All the

�les in the dataset named using this su�x will be read and considered as spatial domain input data

�les, and must be structured following these rules:

• These �les are XML �les

• The root tag must be <openfluid>

• Inside the <openfluid> tag, there must be a <calendar> tag

• Inside the <calendar> tag, there must be a set of <event> tags

• Each <event> tag must bring a <unitID> and a <unitclass> attribute giving the unit on

which occurs the event, a <date> attribute giving the date and time of the event. The date

format must be "YYYY-MM-DD hh:mm:ss". The <event> tag may bring a <name> attribute

and a a <category> attribute, but they are actually ignored.

• Each <event> tag may include zero to many <info> tags.

• Each <info> tag give information about the event and must bring a <key> attribute giving the

name (the "key") of the info, and a <value> attribute giving the value for this key.

1.5. RUN CONFIGURATION(RUN.XML) 11

<?xml version="1.0" standalone="yes"?>

<openfluid>

<calendar>

<event name="" category="test" unitclass="SU" unitID="1" date="1999-12-31 23:59:59">

<info key="when" value="before"/>

<info key="where" value="1"/>

<info key="var1" value="1.13"/>

<info key="var2" value="EADGBE"/>

</event>

<event name="" category="test" unitclass="RS" unitID="1" date="1999-12-01 12:00:00">

<info key="when" value="before"/>

<info key="where" value="1"/>

<info key="var3" value="152.27"/>

<info key="var4" value="XYZ"/>

</event>

<event name="" category="test" unitclass="SU" unitID="2" date="1999-12-01 12:00:00">

<info key="when" value="before"/>

<info key="where" value="7"/>

<info key="var1" value="1.15"/>

<info key="var2" value="EADG"/>

</event>

</calendar>

</openfluid>

1.5 Run con�guration(run.xml)

The con�guration of the simulation gives the simulation period, the data exchange time step, and

the optionnal progressive output parameters.

The con�guration of the simulation must be de�ned in a �le named run.xml, and must be structured

following these rules:

• The run.xml �le is an XML �le

• The root tag must be <openfluid>

• Inside the <openfluid> tag, there must be a <run> tag

• Inside the <run> tag, there must be a <deltat> tag giving the data exchange time step (in

seconds)

• Inside the <run> tag, there must be a <period> tag giving the simulation period.

• The <period> tag must bring a begin and an end attributes, giving the dates of the beginning

and the end of the simulation period. The dates formats for these attributes must be "YYYY-

MM-DD hh:mm:ss"

• Inside the <run> tag, there may be a <progressout> tag giving the con�guration for the

progressive output mode. This <progressout> tag must bring a packet attribute giving the

size (in number of time steps) of the saved packets, and a keep attribute giving the number

of time steps kept in memory.

12 CHAPTER 1. FILE FORMATS

<?xml version="1.0" standalone="yes"?>

<openfluid>

<run>

<deltat>3600</deltat>

<period begin="2000-01-01 00:00:00" end="2000-03-27 01:12:37" />

<progressout packet="10" keep="2" />

</run>

</openfluid>

1.6 Outputs con�guration(output.xml)

The con�guration of the simulation outputs gives the description of the saved results.

The con�guration of the outputs must be de�ned in a �le named output.xml, and must be structured

following these rules:

• The run.xml �le is an XML �le

• The root tag must be <openfluid>

• Inside the <openfluid> tag, there must be a <output> tag

• Inside the <output> tag, there must be one to many <files> tags, de�ning �les formats for

saved data.

• These <files> tags must bring a colsep attribute de�ning the separator strings between

columns, a dtformat attribute de�ning the date time format used (it could be 6cols, iso or

user de�ned using strftime() format), a commentchar attribute de�ning the string pre�xing

lines of comments in output �les.

• Inside the <files> tags, there must be one to many <set> tags. Each <set> tag will lead to

a set of �les.

• Each <set> tag must bring a name attribute de�ning the name of the set (this will be used as a

su�x for generated output �les), a unitsclass attribute and a unitsIDs attribute de�ning the

processed units, a vars attribute de�ning the processed variables. The IDs for the unitsIDs

attribute are semicolon-separated, the wildcard character ('*') can be used to include all units

IDs for the given class. The variables names for the vars attribute are semicolon-separated,

the wildcard character ('*') can be used to include all variables for the given class.

<?xml version="1.0" standalone="yes"?>

<openfluid>

<output>

<!-- dtformat can be predefined (6cols,iso) or using the strftime() format, default is iso -->

<!-- colsep default is \t -->

<files colsep=" " dtformat="%Y %m %d %H %M %S" commentchar="%">

<set name="testRS" unitsclass="RS" unitsIDs="51;232" vars="*" />-->

<set name="full" unitsclass="SU" unitsIDs="*" vars="*" />

</files>

</output>

</openfluid>

Chapter 2

Usage information

The OpenFLUID-Engine application is available on Linux, Windows and MacOSX platforms. We

encourage you to use OpenFLUID-Engine program on Linux platform as it is the development and

usually used platform. The following instructions mainly applies to Linux platforms.

2.1 Installation

On linux platforms, the OpenFLUID-Engine software is available as distribution packages (deb, rpm)

or archive �les (tar.gz, tar.bz2). The recommanded way to install is to use packages for your Linux

distribution. If you want to use archive �les, you have to unarchive the software according to the

directory tree.

Once installed, the openfluid-engine command should be available. You can check it by running the

command openfluid-engine --help or openfluid-engine --version in your favorite terminal.

You are now ready to run your �rst simulation.

2.2 Input dataset

Before running the simulation, the input dataset must be built. An OpenFLUID-Engine input dataset

includes di�erent informations, shared into many �les:

• the spatial domain de�nition

• the �ux model de�nition

• the spatial domain input data

• the discrete events

• the run con�guration

• the outputs con�guration

All these �les must be placed into any directory that can be reached by the engine. The default

searched directory is a directory named .openfluid/engine/OPENFLUID.IN and located into the

user home directory (the user home directory may vary, depending on the used operating system).

This directory is not automatically created, it should be created by hand. If you prefer to place your

dataset in another directory, you can specify it using command line options passed to the engine (-i

or --input-dir).

13

14 CHAPTER 2. USAGE INFORMATION

In order to build these �les, we encouraged you to use a good text editor, or better, an XML editor.

You can also use custom scripts or macros in specialized sotware, such as spreadsheets or Geographic

Information Systems (GIS), to generate automatically the input dataset.

2.3 Engine sequence

The following sequence diagram describes the stage-by-stage execution of an OpenFLUID-Engine-

engine simulation. The kernel is the main application, and the simulation function represents each

simulation function used in the model de�nition.

Stages description:

1. the kernel loads the model de�nition (from the model.xml �le)

2.4. RUN THE SIMULATION 15

2. the kernel loads and instanciates the simulation functions, according to the model de�nition

3. the kernel requests the signature of each simulation function

4. the kernel runs the initParams() method of each simulation function

5. the kernel loads the domain de�nition (from the *.ddef.xml �les)

6. the kernel check the domain de�nition consistency and rebuild the domain topology

7. the kernel loads the domain input data (from the *.ddata.xml �les)

8. the kernel runs the prepareData() method of each simulation function

9. the kernel runs the checkConsistency() method of each simulation function

10. the kernel checks the global consistency (model + domain de�nition + domain input data)

11. the kernel runs the initializeRun() method of each simulation function

12. at every time step, the kernel runs the runStep() method of each simulation function

13. at every time step, if the progressive output of results is enabled and if the current time step

is a "progressive output time step", the kernel saves a packet of data and frees memory

14. the kernel runs the �nalizeRun() method of each simulation function

15. the kernel completes the save of results (all results if progressive output is disabled, the re-

maining results if progressive output is enabled)

2.4 Run the simulation

To run the simulation, if the dataset is located in the default searched directory, simply run the

command openfluid-engine in your favorite terminal. To specify a di�erent input dataset directory,

use the -i or --input-dir command line option.

16 CHAPTER 2. USAGE INFORMATION

2.5 Explore the results

The results are stored in �les, gathered by spatial unit. In each �les, the values for variables are

stored as columns, each row correspon�ng to a data exchange time step (represented as a date and

time). The format of the �les depends on the con�guration of outputs, set through the run.xml �le.

The default output directory is a directory named .openfluid/engine/OPENFLUID.OUT and located

into the user home directory (the user home directory may vary, depending on the used operating

system). If you prefer to save your outputs in another directory, you can specify it using command

line options passed to the engine (-o or --output-dir).

In order to process the results of your simulations, we encourage you to use software environments

such as R, Scilab or Octave, spreadsheets such as OpenO�ce Calc, GIS such as GRASS or QGIS.

Chapter 3

Appendix

3.1 Command line options

-a, �-auto-output-dir generate automatic results output directory

-c, �-clean-output-dir clean results output directory by removing existing

�les

-f, �-functions-list list available functions (do not run the model)

-h, �-help show this help message

-i, �-input-dir=<str> set dataset input directory

-k, �-openfluid-version get ofelib version used for current OpenFLUID-

engine build (do not run the model)

-m, �-trace-dir=<str> set trace directory

-o, �-output-dir=<str> set results output directory

-p, �-functions-paths=<str> add extra functions research paths (colon sepa-

rated)

-q, �-quiet quiet display during simulation run

-r, �-functions-report print a report of available functions, with details

(do not run the model)

-s, �-no-simreport do not generate simulation report

-u, �-matching-functions-report=<str> print a report of functions matching the given

wildcard-based pattern (do not run the model)

-v, �-verbose verbose display during simulation

�-version get version (do not run the model)

-x, �-xml-functions-report print a report of available functions in xml format,

with details (do not run the model)

-z, �-no-results do not write results �les

�-no-varname-check do not check variable name against nomenclature

3.2 Date-time formats used in outputs con�guration

The output.xml �le can use the ANSI strftime() standards formats for date time, through a format

string. The format string consists of zero or more conversion speci�cations and ordinary characters.

A conversion speci�cation consists of a % character and a terminating conversion character that

determines the conversion speci�cation's behaviour. All ordinary characters (including the terminating

null byte) are copied unchanged into the array.

For example, the nineteenth of April, two-thousand seven, at eleven hours, ten minutes and

twenty-�ve seconds formatted using di�erent format strings:

17

18 CHAPTER 3. APPENDIX

• "%d/%m/%Y %H:%M:%S" will give "19/04/2007 10:11:25"

• "%Y-%m-%d %H.%M" will give "2007-04-19 10.11"

• "%Y\t%m\t%d\t%H\t%M\t%S" will give "2007 04 19 10 11 25"

List of available conversion speci�cations:

%a is replaced by the locale's abbreviated weekday name.

%A is replaced by the locale's full weekday name.

%b is replaced by the locale's abbreviated month name.

%B is replaced by the locale's full month name.

%c is replaced by the locale's appropriate date and time representation.

%C is replaced by the century number (the year divided by 100 and truncated to an integer) as

a decimal number [00-99].

%d is replaced by the day of the month as a decimal number [01,31].

%D same as %m/%d/%y.

%e is replaced by the day of the month as a decimal number [1,31]; a single digit is preceded

by a space.

%h same as %b.

%H is replaced by the hour (24-hour clock) as a decimal number [00,23].

%I is replaced by the hour (12-hour clock) as a decimal number [01,12].

%j is replaced by the day of the year as a decimal number [001,366].

%m is replaced by the month as a decimal number [01,12].

%M is replaced by the minute as a decimal number [00,59].

%n is replaced by a newline character.

%p is replaced by the locale's equivalent of either a.m. or p.m.

%r is replaced by the time in a.m. and p.m. notation; in the POSIX locale this is equivalent

to %I:%M:%S %p.

%R is replaced by the time in 24 hour notation (%H:%M).

%S is replaced by the second as a decimal number [00,61].

%t is replaced by a tab character.

%T is replaced by the time (%H:%M:%S).

%u is replaced by the weekday as a decimal number [1,7], with 1 representing Monday.

%U is replaced by the week number of the year (Sunday as the �rst day of the week) as a

decimal number [00,53].

%V is replaced by the week number of the year (Monday as the �rst day of the week) as a

decimal number [01,53]. If the week containing 1 January has four or more days in the

new year, then it is considered week 1. Otherwise, it is the last week of the previous year,

and the next week is week 1.

%w is replaced by the weekday as a decimal number [0,6], with 0 representing Sunday.

%W is replaced by the week number of the year (Monday as the �rst day of the week) as a

decimal number [00,53]. All days in a new year preceding the �rst Monday are considered

to be in week 0.

%x is replaced by the locale's appropriate date representation.

%X is replaced by the locale's appropriate time representation.

%y is replaced by the year without century as a decimal number [00,99].

%Y is replaced by the year with century as a decimal number.

%Z is replaced by the timezone name or abbreviation, or by no bytes if no timezone information

exists.

%% is replaced by %.

3.3. USEFUL LINKS 19

3.3 Useful links

3.3.1 OpenFLUID project

• OpenFLUID web site : http://www.umr-lisah.fr/open�uid/

• OpenFLUID web community : http://www.umr-lisah.fr/open�uid/community/

• OpenFLUID on SourceSup (software forge): https://sourcesup.cru.fr/projects/open�uid/

3.3.2 External tools

• Geany : http://www.geany.org/

• Gnuplot : http://www.gnuplot.info/

• GRASS GIS : http://grass.itc.it/

• jEdit : http://www.jedit.org/

• Octave : http://www.gnu.org/software/octave/

• QGIS : http://www.qgis.org/

• R : http://www.r-project.org/

• Scilab : http://www.scilab.org/

http://www.umr-lisah.fr/openfluid/
http://www.umr-lisah.fr/openfluid/community/
https://sourcesup.cru.fr/projects/openfluid/
http://www.geany.org/
http://www.gnuplot.info/
http://grass.itc.it/
http://www.jedit.org/
http://www.gnu.org/software/octave/
http://www.qgis.org/
http://www.r-project.org/
http://www.scilab.org/

	Foreword
	File formats
	Spatial domain definition (*.ddef.xml)
	Flux model definition (model.xml)
	Spatial domain input data (*.ddata.xml)
	Discrete events (*.events.xml)
	Run configuration(run.xml)
	Outputs configuration(output.xml)

	Usage information
	Installation
	Input dataset
	Engine sequence
	Run the simulation
	Explore the results

	Appendix
	Command line options
	Date-time formats used in outputs configuration
	Useful links

