OpenFLUID

Software Environment
for Modelling Fluxes in Landscapes

Quick reference manual
OpenFLUID-Engine 1.5.0

| ' SA H Fabre, J.C.,
and the modellin

Laboratoire d'étude des Interactions group at LISA
Sol - Agrosystéme - Hydrosystéme

Contents

[Eoreword| 5
[I Usage information| 7
IL.1_Installationl. 7
IL.2 Input dataset| 7
.3 Runthesimulationl 8
11.4 Explore the results] 8
L5 Buddies 9
[2 FluidX file(s) format| 11
DI _Overviewl. 11
D2 Sections 12
3 Appendix 19
3.1 Command line options| 19
3.2__Environment variablesl 19
3.3 Date-time formats used in outputs configuration| 20
13.4 Example of an input dataset as a single FluidX fille| 21
3.5 File formats for interp data generator] oL 23
3.6 Useful linksl o 24

Foreword

This quick reference manual will help you to prepare and run simulations using OpenFLUID-engine.
It will not explain the concepts behind the software, nor the scientific approaches in landscape fluxes
modelling and simulation.

Typographic conventions

The "to note" informations are emphasized like this:

Note: '"to note" information ...

The source code examples are emphasized like this:

example of source code

Source code, with grey background and fixed size font

The "warning" informations are emphasized like this:

Warning: "warning" informations ...

Chapter 1

Usage information

The OpenFLUID-Engine application is available on Linux, Windows and MacOSX platforms. We
encourage you to use OpenFLUID-Engine program on Linux platform as it is the development and
usually used platform.

1.1 Installation

On linux platforms, the OpenFLUID-Engine software is available as distribution packages (deb, rpm)
or archive files (tar.gz, tar.bz2). The recommanded way to install it is to use packages for your Linux
distribution. If you want to use archive files, you have to unarchive the software according to the
directory tree.

Once installed, the openfluid-engine command should be available. You can check it by running the
command openfluid-engine --help or openfluid-engine --version in your favorite terminal.
You are now ready to run your first simulation.

1.2 Input dataset

Before running the simulation, the input dataset must be built. An OpenFLUID-Engine input dataset
includes different informations, defined in one or many files:

e the spatial domain definition

e the flux model definition

the spatial domain input data

the discrete events

e the run configuration
e the outputs configuration

All files must be placed into any directory that can be reached by the engine. The default searched
directory is a directory named .openfluid/engine/0PENFLUID.IN and located into the user home
directory (the user home directory may vary, depending on the used operating system). This direc-
tory is not automatically created, it should be created by hand. If you prefer to place your dataset
in another directory, you can specify it using command line options passed to the engine (-i or
--input-dir).

8 CHAPTER 1. USAGE INFORMATION

In order to build these files, we encouraged you to use a good text editor or, better, an XML editor.
You can also use custom scripts or macros in specialized sotware, such as spreadsheets or Geographic
Information Systems (GIS), to generate automatically the input dataset.

1.3 Run the simulation

To run the simulation, if the dataset is located in the default searched directory, simply run the
command openfluid-engine in your favorite terminal. To specify a different input dataset directory,
use the -i or --input-dir command line option.

fabrejc@lisah-crampling: ~/llabo/OpenFLUID] cspace/Engine-trunk/ build

OPENFLUID. IN. CheckPrimitives
tput/OPENFLUID. OUT . CheckPrimitives

Simulation from 2
6 tim

Progressive output disabled

1.4 Explore the results

The results are stored in files, gathered by spatial unit. In each files, the values for variables are
stored as columns, each row corresponfing to a data exchange time step (represented as a date and
time). The format of the files depends on the configuration of outputs, set through the run.xml file.
The default output directory is a directory named .openfluid/engine/0PENFLUID.OUT and located
into the user home directory (the user home directory may vary, depending on the used operating
system). If you prefer to store your outputs into another directory, you can specify it using command
line options passed to the engine (-o or --output-dir).

In order to process the results of your simulations, we encourage you to use software environments
such as R, Scilab or Octave, spreadsheets such as OpenOffice Calc, GIS such as GRASS or QGIS.

1.5. BUDDIES 9

1.5 Buddies

Buddies are small tools that help scientific developers in order to complete the modelling and/or
development works. They are usable from the command line, using the --buddyhelp, --buddy and
--buddyopts options. Four buddies are available:

e func2doc
e newfunc
e newdata
e convert

Options are given to buddies through a comma-separated list of key=value arguments, using the
--buddyopts command line option.

General usage is:
openfluid-engine -buddy buddyname -buddyopts abuddyopt=avalue,anotherbuddyopt=anothervalue

1.5.1 func2doc

The func2doc buddy extracts scientific information from the source code of simulation functions. It
uses the function signature and IATEX-formatted text placed between the <func2doc> and </func2doc>
tags (usually into C++ comments). From these sources of information, it builds a BTEX document
which could be compiled into a PDF document and/or HTML pages.

The func2doc buddy can also use information from an optional sub-directory named doc, located
in the same directory as the input source file. The information in the doc subdirectory should be
linked to the information from the source code using KTEX \input command. The func2doc buddy
is available on UNIX only systems (Linux, MacOSX).

Required options:

inputcpp path for cpp file to parse
outputdir path for generated files

Other options:

html set to 1 in order to generate documentation as HTML files
pdf set to 1 in order to generate documentation as PDF file
tplfile path to template file

Usage example:
openfluid-engine -buddy func2doc -buddyopts inputcpp=/path/to/cppfile.cpp, outputdir=/path/to/out

1.5.2 newfunc

The newfunc buddy generate a skeleton source code of a simulation function, using given options.

Required options:

cppclass C++ class name of the function
funcid ID of the function

Other options:

10 CHAPTER 1. USAGE INFORMATION

authoremail email(s) of the author(s) of the function
authorname name(s) of the author(s) of the function
outputdir path for generated files

Usage example:
openfluid-engine -buddy newfunc -buddyopts funcid=domain.subdomain.process.method,
outputdir=/path/to/outputdir

1.5.3 newdata

The newdata buddy generate a skeleton dataset.

Required options:

outputdir Output directory for generated dataset

Usage example:
openfluid-engine -buddy newdata -buddyopts outputdir=/path/to/outputdir

1.5.4 convert

The convert buddy converts a dataset from a specific version format to another one. Currently,
conversion is possible from 1.3.x format to 1.4.x format, and from 1.4.x format to 1.5.x format
Required options:

convmode Conversion mode. Available modes are: 13_14, 14_15
inputdir Input directory for dataset to convert
outputdir Output directory for converted dataset

Usage example:
openfluid-engine -buddy convert -buddyopts convmode=13_14, inputdir=/path/to/inputdir,outputdir=,

Chapter 2

FluidX file(s) format

This part of the manual describes the FluidX file(s) format. Refer to the "Usage" part of this manual
to run the simulation.

2.1 Overview

The FluidX file format is an XML based format for OpenFLUID input file(s). The OpenFLUID input
information can be provided by a one or many files using the FluidX format.

Whatever the input information is put into one or many files, the following sections must be defined
in the input file set:

e The model section defined by the <model> tag

e The spatial domain section defined by the <domain> tag

e The run configuration section defined by the <run> tag

e The outputs configuration section defined by the <output> tag

The order of the sections is not significant. All of these sections must be inclosed into an openfluid
section defined by the <openfluid> tag.

summary view of the XML tree for FluidX files

<openfluid>

<model >
<!-- here is the model definition -->
</model>

<domain>
<!-- here is the spatial domain definition, associated data and events -->
</domain>

<output>
<!-- here is the output configuration -->
</output>

<run>
<!-- here is the run configuration -->

</run>

</openfluid>

11

12

2.2

2.2.
The

CHAPTER 2. FLUIDX FILE(S) FORMAT

Sections

1 Model

flux model is defined by an ordered set of data generators and simulations functions that will

be plugged to the OpenFLUID-Engine kernel. It defines the model for the simulation. It can also
include a global parameters section which applies to all simulation functions and generators. The
global parameters may be overridden by local parameters of simulation functions or generators.

The

flux model must be defined in a section delimited by the <model> tag, and must be structured

following these rules:

Inside the <model> tag, there must be a set of <function>, <generator> and <gparams>
tags

Each <function> tag must bring a fileID attribute giving the identifier of the simulation
function; the value of the £ileID attribute must match the file name (without extension) of a
reachable and pluggable simulation function.

Each <function> tag may include zero to many <param> tags giving parameters to the func-
tion. Each <param> tag must bring a name attribute giving the name of the parameter and a
value attribute giving the value of the parameter. These parameters can be scalar or vector
of integer values, floating point values, string values. In case of vector, the values of the vector
are separated by a ; (semicolon).

Each <generator> tag must bring a varname attribute giving the name of the produced vari-
able, a unitclass attribute giving the unit class of the produced variable, a method attribute
giving the method used to produce the variable (fixed for constant value, random for ran-
dom value in a range, interp for an interpolated value from given data series). An optional
<varsize> attribute can be set in order to produce a vector variable instead of a scalar variable.

Each <generator> tag may include zero to many <param> tags giving parameters to the
generator. Each <param> tag must bring a name attribute giving the name of the parameter
and a value attribute giving the value of the parameter.

A generator using the fixed method must provide a param named fixedvalue for the value
to produce.

A generator using the random method must provide a param named min and a param named
max delimiting the random range for the value to produce.

A generator using the interp method must provide a param named sources giving the data
sources filename and a param named distribution giving the distribution filename for the
value to produce (see appendix).

Each <gparams> tag may include zero to many <param> tags giving the global parameters.
Each <param> tag must bring a name attribute giving the name of the parameter and a value
attribute giving the value of the parameter.

example

<7xm

1 version="1.0" standalone="yes"?>

<openfluid>

<m

odel>

<gparams>
<param name='"gparaml" value="100" />

<param name='"gparam2" value="0.1" />

2.2. SECTIONS 13

</gparams>
<function fileID="example.functionA" />

<generator varname="example.generator.fixed" unitclass="EU1l" method="fixed" varsize="11">
<param name="fixedvalue" value="20" />
</generator>

<generator varname="example.generator.random" unitclass="EU2" method="random">
<param name="min" value="20.53" />
<param name="max" value="50" />

</generator>

<function fileID="example.functionB">
<param name="paraml" value="strvalue" />
<param name="param2" value="1.1" />
<param name='"gparaml" value="50" />
</function>

</model>
</openfluid>

Warning: There must be only one model definition in the input dataset.

Warning: The order of the simulation functions and data generators in the <model> section is
very important : the same order will be used for execution on the same time step

2.2.2 Spatial domain
Definition and relationships

The spatial domain is defined by a set of spatial units that are connected each others. These spatial
units are defined by a numerical identifier (ID) and a class. They also include information about the
processing order of the unit in the class. Each unit can be connected to zero or many other units
from the same or a different unit class.

The spatial domain definition must be defined in a section delimited by the <definition> tag, which
iS a sub-section of the domain tag, and must be structured following these rules:

e Inside the <definition> tag, there must be a set of <unit> tags

e Fach <unit> tag must bring an ID attribute giving the identifier of the unit, a class attribute
giving the class of the unit, a pcsorder attribute giving the process order in the class of the
unit

e Each <unit> tag may include zero or many <to> tags giving the outgoing connections to other
units. Each <to> tag must bring an ID attribute giving the identifier of the connected unit and
a class attribute giving the class of the connected unit

e Each <unit> tag may include zero or many <childof> tags giving the parent units. Each
<childof> tag must bring an ID attribute giving the identifier of the parent unit and a class
attribute giving the class of the parent unit

example

<?7xml version="1.0" standalone="yes"?>
<openfluid>
<domain>

14 CHAPTER 2. FLUIDX FILE(S) FORMAT

<definition>
<unit class="PU" ID="1" pcsorder="1" />

<unit class="EU1" ID="3" pcsorder="1">
<to class="EU1" ID="11" />
<childof class="PU" ID="1" />
</unit>

<unit class="EU1" ID="11" pcsorder="3">
<to class="EU2" ID="2" />
</unit>

<unit class="EU2" ID="2" pcsorder="1" />
</definition>

</domain>
</openfluid>

Input data

The spatial domain input data are static data brought by units, usually properties and initial conditions
for each unit.

The spatial domain input data must be defined in a section delimited by the <inputdata> tag, which
iS a sub-section of the domain tag, and must be structured following these rules:

e The <inputdata> tag must bring a unitclass attribute giving the unit class to which input
data must be attached, and a colorder attribute giving the order of the contained column-
formatted data

e Inside the <inputdata> tag, there must be the input data as row-column text. As a rule, the
first column is the ID of the unit in the class given through the the unitclass attribute of
<inputdata> tag, the following columns are values following the column order given through
the colorder attribute of the <inputdata> tag. Values for the data can be real, integer or
string.

example

<?xml version="1.0" standalone="yes"?>
<openfluid>
<domain>

<inputdata unitclass="EU1l" colorder="indataA">
3 1.1
11 7.5

</inputdata>

<inputdata unitclass="EU2" colorder="indataBl;indataB3">
2 18 STRVALX
</inputdata>

</domain>
</openfluid>

Note: OlId inputdata format, with <columns> and <data> tags are still useable. However, you
are encouraged to use the new FluidX file format.

2.2. SECTIONS 15

Discrete events

The discrete events are events occuring on units, and that can be processed by simulation functions.
The spatial events must be defined in a section delimited by the <calendar> tag, which is a sub-
section of the domain tag, and must be structured following these rules:

e Inside the <calendar> tag, there must be a set of <event> tags

e Each <event> tag must bring a unitID and a unitclass attribute giving the unit on which
occurs the event, a date attribute giving the date and time of the event. The date format
must be "YYYY-MM-DD hh:mm:ss". The <event> tag may bring a name attribute and a a
category attribute, but they are actually ignored.

e Each <event> tag may include zero to many <info> tags.
e Each <info> tag give information about the event and must bring a key attribute giving the

name (the "key") of the info, and a value attribute giving the value for this key.

example

<?7xml version="1.0" standalone="yes"?>

<openfluid>
<domain>
<calendar>

<event unitclass="EU1" unitID="11" date="1999-12-31 23:59:59">
<info key="when" value="before" />
<info key="where" value="1" />
<info key="varl" value="1.13" />
<info key="var2" value="EADGBE" />

</event>

<event unitclass="EU2" unitID="3" date="2000-02-05 12:37:51">
<info key="var3" value="152.27" />
<info key="var4" value="XYZ" />

</event>

<event unitclass="EU1l" unitID="11" date="2000-02-25 12:00:00">
<info key="varl" value="1.15" />
<info key="var2" value="EADG" />

</event>

</calendar>
</domain>
</openfluid>

2.2.3 Run configuration

The configuration of the simulation gives the simulation period, the data exchange time step, and
the optionnal progressive output parameters.

The run configuration must be defined in a section delimited by the <run> tag, and must be structured
following these rules:

e Inside the <run> tag, there must be a <deltat> tag giving the data exchange time step (in
seconds)

e Inside the <run> tag, there must be a <period> tag giving the simulation period.

e The <period> tag must bring a begin and an end attributes, giving the dates of the begin-
ning and the end of the simulation period. The dates formats for these attributes must be
YYYY-MM-DD hh:mm:ss

16 CHAPTER 2. FLUIDX FILE(S) FORMAT

e Inside the <run> tag, there may be a <progressout> tag giving the configuration for the
progressive output mode. This <progressout> tag must bring a packet attribute giving the
size (in number of time steps) of the saved packets, and a keep attribute giving the number
of time steps kept in memory.

example

<?7xml version="1.0" standalone="yes"?>

<openfluid>
<run>

<deltat>3600</deltat>
<period begin="2000-01-01 00:00:00" end="2000-03-27 01:12:37" />

<progressout packet="10" keep="2" />

</run>
</openfluid>

2.2.4 Outputs configuration

The configuration of the simulation outputs gives the description of the saved results.
The outputs configuration must be defined in a section delimited by the <output> tag, and must be
structured following these rules:

e Inside the <output> tag, there must be one to many <files> tags, defining files formats for
saved data.

e These <files> tags must bring a colsep attribute defining the separator strings between
columns, a dtformat attribute defining the date time format used (it could be 6cols, iso or
user defined using strftime() format whis is described in the appendix part of this document),
a commentchar attribute defining the string prefixing lines of comments in output files.

e Inside the <files> tags, there must be one to many <set> tags. Each <set> tag will lead to
a set of files.

e Each <set> tag must bring a name attribute defining the name of the set (this will be used as
a suffix for generated output files), a unitsclass attribute and a unitsIDs attribute defining
the processed units, a vars attribute defining the processed variables. It may also bring an a
precision attribute giving the number of significant digits for the values in the outputs files.
The IDs for the unitsIDs attribute are semicolon-separated, the wildcard character ("*') can
be used to include all units IDs for the given class. The variables names for the vars attribute
are semicolon-separated, the wildcard character ('*’) can be used to include all variables for the
given class. The value for the precision attribute must be > 0. If not provided, the default
value for the precision is 5.

example
<?xml version="1.0" standalone="yes"?>
<openfluid>
<output>
<files colsep=" " dtformat="%Y %m %d %H %M %S" commentchar="%">

<set name="testRS" unitsclass="RS" unitsIDs="51;232" vars="*" />
<set name="full" unitsclass="SU" unitsIDs="*" vars="*" precision="7"/>
</files>

2.2. SECTIONS

</output>
</openfluid>

17

Chapter 3

Appendix

3.1 Command line options

-a, --auto-output-dir generate automatic results output directory

-b, --buddy <arg> run specified OpenFLUID buddy

--buddyhelp <arg> display help message for specified OpenFLUID
buddy

--buddyopts <arg> set options for specified OpenFLUID buddy

-c, --clean-output-dir clean results output directory by removing existing
files

-f, --functions-list list available functions (do not run the simulation)

-h, --help display help message

-i, --input-dir <arg> set dataset input directory

-0, --output-dir <arg> set results output directory

-p, --functions-paths <arg> add extra functions research paths

-q, --quiet quiet display during simulation run

-r, --functions-report print a report of available functions, with details
(do not run the simulation)

-s, --no-simreport do not generate simulation report

--show-paths print the used paths (do not run the simulation)

-u, --matching-functions-report <arg> print a report of functions matching the given
wildcard-based pattern (do not run the simulation)

-v, --verbose verbose display during simulation

--version get version (do not run the simulation)

-x, --xml-functions-report print a report of available functions in xml format,
with details (do not run the simulation)

-z, --no-result do not write results files

3.2 Environment variables

The openfluid-engine program takes into account the following environment variables (if they are
set):

e OPENFLUID_FUNCS_PATH: extra search paths for OpenFLUID-Engine simulation functions. The
path are separated by colon on UNIX systems, and by semicolon on Windows systems.

e OPENFLUID_INSTALL_PREFIX: overrides automatic detection of install path, useful on Windows
systems.

19

20 CHAPTER 3. APPENDIX

3.3 Date-time formats used in outputs configuration

The output.xml file can use the ANSI strftime() standards formats for date time, through a format
string. The format string consists of zero or more conversion specifications and ordinary characters.
A conversion specification consists of a % character and a terminating conversion character that
determines the conversion specification's behaviour. All ordinary characters (including the terminating
null byte) are copied unchanged into the array.

For example, the nineteenth of April, two-thousand seven, at eleven hours, ten minutes and
twenty-five seconds formatted using different format strings:

o "7d/%m/%Y YH:YM:%S" will give "19/04/2007 10:11:25"

o "%Y-Ym-%d %H.JM" will give "2007-04-19 10.11"

o "7Y\t/m\t%dA\tZH\tZM\t%S" will give "2007 04 19 10 11 25"

List of available conversion specifications:

3.4. EXAMPLE OF AN INPUT DATASET AS A SINGLE FLUIDX FILE 21

Format Description

%a locale’s abbreviated weekday name.

%A locale’s full weekday name.

%b locale’s abbreviated month name.

%B locale’s full month name.

%c locale’s appropriate date and time representation.

%C century number (the year divided by 100 and truncated to an integer) as a decimal
number [00-99].

%d day of the month as a decimal number [01,31].

%D same as %m/%d/%y.

%e day of the month as a decimal number [1,31]; a single digit is preceded by a space.

%h same as %b.

%H hour (24-hour clock) as a decimal number [00,23].

%! hour (12-hour clock) as a decimal number [01,12].

%ij day of the year as a decimal number [001,366].

%m month as a decimal number [01,12].

%M minute as a decimal number [00,59].

%n is replaced by a newline character.

%p locale’s equivalent of either a.m. or p.m.

Y%r time in a.m. and p.m. notation; in the POSIX locale this is equivalent to %!|:%M:%S
%p.

%R time in 24 hour notation (%H:%M).

%S second as a decimal number [00,61].

%t is replaced by a tab character.

%T time (%H:%M:%S).

%u weekday as a decimal number [1,7], with 1 representing Monday.

%U week number of the year (Sunday as the first day of the week) as a decimal number
[00,53].

%V week number of the year (Monday as the first day of the week) as a decimal number
[01,53]. If the week containing 1 January has four or more days in the new year, then it
is considered week 1. Otherwise, it is the last week of the previous year, and the next
week is week 1.

%w weekday as a decimal number [0,6], with O representing Sunday.

%W week number of the year (Monday as the first day of the week) as a decimal number
[00,53]. All days in a new year preceding the first Monday are considered to be in week
0.

Y%x locale’s appropriate date representation.

%X locale’s appropriate time representation.

%y year without century as a decimal number [00,99].

%Y year with century as a decimal number.

%Z timezone name or abbreviation, or by no bytes if no timezone information exists.

%% character %.

3.4 Example of an input dataset as a single FluidX file

<?xml version="1.0" standalone="yes"?>

<openfluid>

<model>

<gparams>
<param name='"gparaml" value="100" />

<param name=

gparam2" value="0.1" />

22 CHAPTER 3. APPENDIX

</gparams>
<function fileID="example.functionA" />
<generator varname="example.generator.fixed" unitclass="EU1"
method="fixed" varsize="11">
<param name="fixedvalue" value="20" />
</generator>
<generator varname="example.generator.random" unitclass="EU2"
method="random">
<param name="min" value="20.53" />
<param name="max" value="50" />
</generator>
<function fileID="example.functionB">
<param name="paraml" value="strvalue" />
<param name="param2" value="1.1" />
<param name='"gparaml" value="50" />
</function>
</model>

<domain>

<definition>
<unit class="PU" ID="1" pcsorder="1" />
<unit class="EU1" ID="3" pcsorder="1">
<to class="EUL" ID="11" />
<childof class="PU" ID="1" />
</unit>
<unit class="EU1" ID="11" pcsorder="3">
<to class="EU2" ID="2" />
</unit>
<unit class="EU2" ID="2" pcsorder="1" />
</definition>

<inputdata unitclass="EUl" colorder="indataA">
3 1.1
11 7.5

</inputdata>

<inputdata unitclass="EU2" colorder="indataBl;indataB3">
2 18 STRVALX
</inputdata>

<calendar>
<event unitclass="EU1l" unitID="11" date="1999-12-31 23:59:59">
<info key="when" value="before" />
<info key="where" value="1" />
<info key="varl" value="1.13" />
<info key="var2" value="EADGBE" />
</event>
<event unitclass="EU2" unitID="3" date="2000-02-05 12:37:51">
<info key="var3" value="152.27" />
<info key="var4" value="XYZ" />
</event>
<event unitclass="EU1l" unitID="11" date="2000-02-25 12:00:00">
<info key="varl" value="1.15" />
<info key="var2" value="EADG" />
</event>
</calendar>

</domain>

<run>
<deltat>3600</deltat>

3.5. FILE FORMATS FOR INTERP DATA GENERATOR 23

<period begin="2000-01-01 00:00:00" end="2000-03-27 01:12:37" />
<progressout packet="10" keep="2" />
</run>

<output>
<files colsep=" " dtformat="%Y %m %d %H %M %S" commentchar="%">
<set name="testRS" unitsclass="RS" unitsIDs="51;232" vars="x" />
<set name="full" unitsclass="SU" unitsIDs="*" vars="*" precision="7" />
</files>
</output>

</openfluid>

3.5 File formats for interp data generator

3.5.1 Sources

The sources file format is an XML based format which defines a list of sources files associated to an
unique 1D.

The sources must be defined in a section delimited by the <datasources> tag, inside an <openfluid>
tag and must be structured following these rules:

e Inside the <datasources> tag, there must be a set of <filesource> tags

e Fach <filesource> tag must bring an ID attribute giving the identifier of source, and an file
attribute giving the name of the file containing the source of data. The files must be placed in
the input directory of the simulation.

example of a sources list file

<?7xml version="1.0" standalone="yes"?>

<openfluid>

<datasources>
<filesource ID="1" file="sourcel.dat" />
<filesource ID="2" file="source2.dat" />
</datasources>

</openfluid>

An associated source data file is a seven columns text file, containing a serie of values in time.
The six first columns are the date using the following format YYYY MM DD HH MM SS. The 7t/ column
is the value itself.

example of a source data file

1999 12 31 12 00 00 -1.0
1999 12 31 23 00 00 -5.0
2000 01 01 00 30 00 -15.0
2000 01 01 00 40 00 -5.0
2000 01 01 01 30 00 -15.0

3.5.2 Distribution

A distribution file is a two column file associating a unit ID (1°‘column) to a source ID (2"9column).

24 CHAPTER 3. APPENDIX

example of distribution file

g W N
= N =N

3.6 Useful links

3.6.1 OpenFLUID project
e OpenFLUID web site : http://www.umr-lisah.fr/openfluid/

e OpenFLUID web community : http://www.umr-lisah.fr/openfluid/community /

e OpenFLUID on SourceSup (software forge): https://sourcesup.cru.fr/projects/openfluid/

3.6.2 External tools

e Geany : http://www.geany.org/

Gnuplot : http://www.gnuplot.info/

GRASS GIS : |http://grass.itc.it/

jEdit © |http://www.jedit.org/

Octave : http://www.gnu.org/software/octave/

QGIS : http://www.qgis.org/

R : |http://www.r-project.org/

Scilab : |http://www.scilab.org/

http://www.umr-lisah.fr/openfluid/
http://www.umr-lisah.fr/openfluid/community/
https://sourcesup.cru.fr/projects/openfluid/
http://www.geany.org/
http://www.gnuplot.info/
http://grass.itc.it/
http://www.jedit.org/
http://www.gnu.org/software/octave/
http://www.qgis.org/
http://www.r-project.org/
http://www.scilab.org/

	Foreword
	Usage information
	Installation
	Input dataset
	Run the simulation
	Explore the results
	Buddies

	FluidX file(s) format
	Overview
	Sections

	Appendix
	Command line options
	Environment variables
	Date-time formats used in outputs configuration
	Example of an input dataset as a single FluidX file
	File formats for interp data generator
	Useful links

