N~ N2

OpenFLUID

Software Environment
for Modelling Fluxes in Landscapes

OpenFLUID

In a nutshell

Manual for OpenFLUID v2.1.5

L l SA H Jean-Christophe Fabre, 2018

Laboratoire d'ét ddl
SIAgy Hydroy

Contents

Running simulations with OpenFLUID

Graphical Interface for simulations : OpenFLUID-Builder

Command-line interface : openfluid oo

Within the GNU R environment : ROpenFLUID

Development environment : OpenFLUID-DevStudio

Foreword
|
1 Usage of OpenFLUID applications
1.1
1.2
1.3
1.4
2 Format of input datasets

2.1
2.2

Overview
Sections

2.2.1 Model section

222 Spatialdomainsection

2.2.3 Datastore section e

2.24 DMonitoring section e e

2.25 Runconfigurationsection

2.3 Runtimevariablesinparameterso

2.4 Example of an input dataset as a single FluidXfile

Development of OpenFLUID simulators

Overview of an OpenFLUID simulator

3.1
3.2

Simulator signature .

Simulator C++ class .

3.2.1 Constructor and destructor

3.2.2 Mandatory methodstobedefined

a a0 b W0 W

© 0 0 N N

11

13

14
14

17

ii CONTENTS
4 Creation of an empty simulator 21
4.1 Required tools for development environment oL 21
4.2 Writingthe signature 21
4.3 Writing the C++ class for the simulator 22
4.4 Buildingthe simulator 22
45 Complete example L 23
4.5.1 File ExampleSimulator.cpp containing the simulator source code 23

4.5.2 File CMake.in.config containing the build configuration. 24

4.5.3 File CMakelLists.txt defining the build process 26

5 Declaration of the simulator signature 27
5.1 Identification e e 27
5.2 Informations about scientific application.o 27
5.3 Dataandspatialgraph 28
5.3.1 Simulator parameters 28

5.3.2 Spatialattributes 28

5.3.3 Simulationvariables 29

5.3.4 Discreteevents 30

5835 Extrafiles 30

5.8.6 Spatialunitsgraph 30

5.4 Complete signature example 31

6 Development of the simulator source code 33
6.1 General information about simulators architecture 33
6.1.1 Simulator methods sequence and framework interactions 33

6.1.2 OpenFLUIDdatatypes 34

6.2 Handling the spatialdomain 35
6.2.1 Parsingthe spatialgraph L 35

6.2.2 Querying the spatial graph L 37

6.2.3 Modifying the spatialgraph 38

6.3 Informations about simulationtime oL 39
6.4 Simulator parameters L e e e e e 40
6.5 Spatial attributes 41
6.6 Simulationvariables 41
6.7 Events e 42
6.8 Internalstatedata 43
6.9 Runtimeenvironment L 44

OpenFLUID in a nutshell

CONTENTS

6.10 Informations, warningsanderrors
6.10.1 Informations and warnings from simulators
6.10.2 Errors fromsimulators Lo

6.11 Debugging

6.12 Fortran 77/90 source code integration

6.13 Miscellaneous helpers oo

Documenting your simulators

Appendix

Command line options and environment variables

A1 Environmentvariables oo
A2 Commandlineusage i
A.2.1 Running simulations o oL
A22 Waresreporting
A23 Paths
A24 Buddies

Datetime formats

String representations of values

C.1 Simplevalues
C1.1 BooleanValue
C.1.2 IntegerValue
C.1.3 DoubleValue
C1.4 StringValue L
C.2 Compoundvalues
C21 VectorValue
C.22 MatrixValue
C23 MapValue
C24 TreeValue

File formats for generators

D.1 Sourcesfile

D.2 Distributionfileo

44
45
45
46
46
47

49

51

53
53
53
54
54
55
55

57

59
59
59
59
59
59
59
60
60
60
60

OpenFLUID in a nutshell

Foreword

OpenFLUID is a software environment for modelling spatial functionning of landscapes, mainly focused on
fluxes. It is developed by the LISAH (Laboratory of Interactions Soil-Agrosystem-Hydrosystem, Montpellier,
France) which is a joint research unit between INRA (French National Institute for Agricultural Research),
IRD (French Institute for Research and Development) and Montpellier SupAgro (International Centre for
Higher Education in Agricultural Sciences).

This documentation is made of several parts

 a guide for running simulations using OpenFLUID, including the construction of input datasets

+ a guide for development of simulators for OpenFLUID, either using existing source code or creating
source code de novo

+ an appendix giving useful reference informations

More informations are available on the official OpenFLUID web site, notably detailed informations on
scientific concepts underlying the OpenFLUID software and practical informations about how to develop
simulators including APl documentation.

Official OpenFLUID web site: http://www.openfluid-project.org

http://www.openfluid-project.org

Foreword

OpenFLUID in a nutshell

Part |

Running simulations with OpenFLUID

Chapter 1

Usage of OpenFLUID applications

OpenFLUID simulations can be run either using the command line interface (openfluid program),
the graphical user interface (openfluid-builder program), or using the R environment through the
ROpenFLUID package.

All these programs and packages use the same input dataset format (See Formats of input datasets),
and propose all concepts and features of the OpenFLUID software environment, as they share the same
OpenFLUID software framework. A simulation input dataset can be executed using any of the following
OpenFLUID software programs (except using the DevStudio development environment).

1.1 Graphical Interface for simulations : OpenFLUID-Builder

The OpenFLUID-Builder user interface proposes a graphical environment to prepare, parameterize, execute
and exploit simulations with OpenFLUID. It is a good starting point for beginners who discover the Open-
FLUID concepts and environment. It can be run either from the program menu of your system or from a
console using the openfluid-builder command.

OpenFLUID-Builder [1

R ® c A & >
New Open Reload Save Saveas wlation
Project dashboard
Model | spatial domain | Datastore | Monitoring | Simulation configuration | Outputs browser
MHYDAS_Roujan Global parameters show
/home/fabrejc/.openfiuid/examples/projects/MHYDAS_Roujan
Coupled model

Coupled model: 4 simulator(s) and 0 generator(s)
Management | Graphical view

Spatial domain: 634 spatial unit(s) in 3 units class(es)

View

& show variables

Datastore: 3 item(s)

Monitoring: 2 observer(s)

) wateratm-surf rain-su.files [Fittoallitems
Run configuration: total duration of 41400 seconds Prod
with a default DeltaT of 60 seconds and no * [Resettodefault
constraint.

Ready for simulation

Req us Export
No problem detected
watersurf-uz.runofinfiltration mseytoux [ExportasPNG...

Export as SVG...

&
Req us
watersurf transfer-su hayami
Prod

watersurf transfer-rs hayami
Prod

.

Figure 1.1: Screenshot of the model view in OpenFLUID-Builder

4 Usage of OpenFLUID applications

OpenFLUID-Builder [1

R » A B >

New Open Reload Save Saveas Close Run simulation

Project dashboard EE) N . -
Model | Spatial domain | Datastore | Monitoring | Simulation configuration | Outputs browser

MHYDAS_Roujan & Add units class

Ihome/ id/examples/projects/MHYDAS Roujan
structure | Map

RS ¥ (=

Coupled model: 4 simulator(s) and 0 generator(s) View

Show map style

Spatial domain: 634 spatial unit(s) in 3 units class(es) & Automatic view

su

C
C
]

server(s)
Hide map style

Run configuration: total duration of 41400 seconds

with a default DeltaT of 60 seconds and no

constraint

apefiles/roujan_su_wgss4.shp
@ visible
Line width [1

Line color [l
Fillcolor _|

Ready for simulation

No problem detected
Gu * -

Show map style

He Ks area betaMs flowdist nmanning slope thetaini thetains t
01 732606 4813344 13 14366 0.05 006265 0.3 02 o‘

~

01 251606 293982 13 18468 0.05 027129 03 02
01 258606 1038.097 1.3 5015 0.05 016391 0.3 02

1
2

3 o

4 01 225606 498407 13 4906 005 014065 0.3 02 o |==
5 01 235606 1610.964 1.3 23031 005 010073 0.3 02 o

& o

01 227608 1282080 13 20407 _nos nnsas: n2 0>

Figure 1.2: Screenshot of the spatial domain map view in OpenFLUID-Builder

OpenFLUID-Builder functionalities can be extended by Builder-extensions which are graphical plugins for
this user interface. By default, OpenFLUID is provided with two Builder-extensions: a graph viewer repre-
senting the spatial domain as a connected graph, and a spatial data importer to create a spatial domain from
standard GIS data file formats (such as Shapefiles) or from a WFS service (Web Feature Service) available
from a local or an internet server.

1.2 Command-line interface : openfluid

The OpenFLUID command line interface allows to run OpenFLUID simulations from a terminal, using the
openfluid program. This usage is particularly useful for running multiple simulations in batch or on
compute systems such as compute clusters.

To run the simulation, execute the openfluid program with adapted commands and options. You can run
a simulation using the run command and giving the input dataset path or the project path and the optional
results output path:

openfluid run (</path/to/dataset>|</path/to/project>) [</path/to/results>]

When running a project, the results output path is ignored as it is already defined in the project itself. The
project must be a valid OpenFLUID project, usually created using the OpenFLUID-Builder user interface. It
can also be created by hand.

See Command line usage or run openfluid -help to get the list of available commands and options.

OpenFLUID in a nutshell

1.3 Within the GNU R environment : ROpenFLUID 5

Figure 1.3: OpenFLUID simulation using command line

1.3 Within the GNU R environment : ROpenFLUID

OpenFLUID can be used from within the GNU R environment with the ROpenFLUID package. This package
allows to load an input dataset, parameterize and run a simulation, exploit simulation results.

It is really useful for taking benefit of all R features and packages for sensitivity analysis, optimization,
uncertainty propagation analysis, and more.

Example of a simulation launch in R using the ROpenFLUID package:

library (' ROpenFLUID’)

ofsim = OpenFLUID.loadDataset (’ /path/to/dataset’)
OpenFLUID.runSimulation (ofsim)

data = OpenFLUID.loadResult (ofsim,’ TestUnits’,15,’var.name’)

More details are available in the specific ROpenFLUID documentation, available on the OpenFLUID web
site.

1.4 Development environment : OpenFLUID-DevStudio

The OpenFLUID-Devstudio is the environment for development of simulators, observers and builder-
extensions for OpenFLUID. It proposes a complete environment for assisted source code creation and
development. It can be run either from the program menu of your system or from a console using the
openfluid-devstudio command.

OpenFLUID in a nutshell

6 Usage of OpenFLUID applications

OpenFLUID-Devstudio

R ® A B M4 ..

New Open Save Saveas Configure Build

s myfirst.simulator % | my.second.simulator %
» B my.first.simulator
v B my.secondsimulator
>

& CMake.in.config

A CMakeLists.txt

< MySecondsim.cpp

8 wareshubjson

#include <openfluid/ware/Pluggablesimulator.hpp>

BEGIN_SIMULATOR_SIGNATURE (*my.second. sinulator")

DECLARE_NAME("")
DECLARE_DESCRIPTION("")
DECLARE_VERSION("")
DECLARE_STATUS (openfluid: :ware: : EXPERIMENTAL)
END_STMULATOR_STGNATURE
CMake.n.config % | Mysecondsim.cpp %

Messages:

~Build files have been written to: doc-2. 7 / build-release-2.1
Scanning dependencies of target my.second.simulator_ofware-sim
[100%] Building CXX object CMakeF: nd.simulator_ofware-sim. op.

Linking CXX shared module my.second simulator_ofware-sim so
[100%] Built target my.second.simulator_ofware-sim

Install the project.

~ Install configuration: "Release”

~ Installing: imulator_ofware-sim.so
~Removed runtime path from* imulator_ofware-sim.so"
CEmTRTE Command ended

Builder extensions

Figure 1.4: Screenshot of OpenFLUID-DevStudio workspace

The OpenFLUID-DevStudio environment proposes the following facilities:

+ Assisted creation of simulators, observers and builder-extensions

» Ware-centered organization of workspace with navigator

* Integrated configuration and build of source code (for debug and install modes)

» OpenFLUID-oriented completion system (as you type and through contextual menu)
* Help shortcut to online documentation

» Other usual features of source code editor

OpenFLUID in a nutshell

Chapter 2

Format of input datasets

This part of the manual describes the FluidX file(s) format used to define a simulation dataset. Refer to the
Overview of OpenFLUID applications part of this manual to run the simulations.

An OpenFLUID input dataset includes different informations, defined in one or many files:

+ the spatial domain definition
+ the flux model definition

+ the spatial domain attributes
+ the monitoring configuration
+ the discrete events

« the run configuration

All files must be placed into a directory that can be reached by the OpenFLUID program used.

As OpenFLUID-Builder uses the FluidX format natively, the entire input dataset can be created through the
OpenFLUID-Builder software.

Out of OpenFLUID-Builder, these FluidX files can be created by hand or using external tools. In this case, it
is encouraged to write custom scripts in dedicated software, such as Geographic Information Systems (GIS)
or scientific environments such as R.

2.1 Overview

The FluidX file format is an XML based format for OpenFLUID input datasets. The OpenFLUID input infor-
mation can be provided by a one or many files using this FluidX formatn with the . £1uidx file extension.

Whatever the input information is put into one or many files, the following sections must be defined in the
input file(s) set:

» The model section defined by the <mode 1> tag
» The spatial domain section defined by the <domain> tag
 The run configuration section defined by the <run> tag

» The monitoring section defined by the <monitoring> tag

Format of input datasets

The order of these sections is not significant. All of these sections must be inclosed into an openfiuid section
defined by the <openfluid> tag.

Summary view of the XML structure of FluidX files:

1 <?xml version="1.0" standalone="yes"?>
2 <openfluid>

3

w ~J oy U1

9

10
11
12
13
14
15
16
17
18
19

<model>

<!-- here is the model definition -->
</model>
<domain>

<!-- here is the spatial domain definition, associated data and events —-->
</domain>

<monitoring>

<!-— here is the monitoring definition -->

</monitoring>

<run>

<!-- here is the run configuration -->
</run>

20 </openfluid>

2.2 Sections

2.2.1

Model section

The coupled model is defined by an ordered set of simulators and/or data generators that will be automati-
cally plugged and run by the OpenFLUID environment. It can also include a section for global parameters
which apply to all simulators and generators. The global parameters may be overridden by local parameters
of simulators or generators.

The coupled model must be defined in a section delimited by the <mode1> tag, and must be structured
following these rules:

Inside the <model> tag, there must be a set of <simulator>, <generator> and
<gparams> tags

Each <simulator> tag must bring an ID attribute giving the identifier of the simulator; the value
of the ID attribute must match the ID of an available and pluggable simulator.

Each <simulator> tag may include zero to many <param> tags giving parameters to the sim-
ulator. Each <param> tag must bring a name attribute giving the name of the parameter and a
value attribute giving the value of the parameter. These parameters can be scalar or vector of
integer values, floating point values, string values. In case of vector, the values of the vector are
separated by a ; (semicolon).

Each <generator> tag must bring a varname attribute giving the name of the produced variable,
aunitsclass attribute giving the unit class of the produced variable, a method attribute giving
the method used to produce the variable (f1ixed for constant value, random for random value in a
range, interp for a time-interpolated value from given data series, inject for an injected value
-no time interpolation- from given data series). An optional <varsize> attribute can be set in order
to produce a vector variable instead of a scalar variable.

OpenFLUID in a nutshell

2.2 Sections 9

» Each <generator> tag may include zero to many <param> tags giving parameters to the gen-
erator. Each <param> tag must bring a name attribute giving the name of the parameter and a
value attribute giving the value of the parameter.

» A generator using the £ixed method must provide a param named fixedvalue for the value to
produce.

+ A generator using the random method must provide a param named min and a param named max
delimiting the random range for the value to produce.

+ A generator using the inject or interp method must provide a param named sources giving
the data sources filename and a param named distribution giving the distribution filename for
the value to produce (see also File formats for "interp" or "inject" generators).

+ Each <gparams> tag may include zero to many <param> tags giving the global parameters.
Each <param> tag must bring a name attribute giving the name of the parameter and a value
attribute giving the value of the parameter.

1 <?xml version="1.0" standalone="yes"?>
2 <openfluid>

3 <model>

4

5 <gparams>

6 <param name="gparaml" value="100" />

7 <param name="gparam2" value="0.1" />

8 </gparams>

9

10 <simulator ID="example.simulatorA" />

11

12 <generator varname="example.generator.fixed" unitsclass="EUl" method="fixed" varsize="11">
13 <param name="fixedvalue" value="20" />
14 </generator>

15

16 <generator varname="example.generator.random" unitsclass="EU2" method="random">
17 <param name="min" value="20.53" />

18 <param name="max" value="50" />

19 </generator>

20

21 <simulator ID="example.simulatorB">

22 <param name="paraml" value="strvalue" />
23 <param name="param2" value="1.1" />

24 <param name="gparaml" value="50" />

25 </simulator>

26

27 </model>
28 </openfluid>
Warning

There must be only one model definition in the input dataset.

The order of the simulators and data generators in the <mode 1> section is important : this order will
be the call order at initialization time, and the permanent call order in synchronized coupled model (not
applicable for variable time coupled models)

2.2.2 Spatial domain section
2.2.2.1 Definition and connectivity

The spatial domain is defined by a set of spatial units that are connected each others. These spatial units are
defined by a numerical identifier (ID) and a class. They also include information about the processing order

OpenFLUID in a nutshell

10 Format of input datasets

of the unit in the class. Each unit can be connected to zero or many other units from the same or a different
unit class. The spatial domain definition must be defined in a section delimited by the <definition>
tag, which is a sub-section of the doma in tag, and must be structured following these rules:

* Inside the <definition> tag, there must be a set of <unit> tags

« Each <unit> tag mustbring an ID attribute giving the identifier of the unit, a c1ass attribute giving
the class of the unit, a pcsorder attribute giving the process order in the class of the unit

+ Each <unit> tag may include zero or many <to> tags giving the outgoing connections to other
units. Each <to> tag must bring an ID attribute giving the identifier of the connected unit and a
class attribute giving the class of the connected unit

+ Each <unit> tag may include zero or many <childof> tags giving the parent units. Each
<childof> tag must bring an ID attribute giving the identifier of the parent unit and a class
attribute giving the class of the parent unit

1 <?xml version="1.0" standalone="yes"?>
2 <openfluid>

3 <domain>

4 <definition>

5

6 <unit class="PU" ID="1" pcsorder="1" />
7

8 <unit class="EUL" ID="3" pcsorder="1">

9 <to class="EUl" ID="11" />

10 <childof class="PU" ID="1" />

11 </unit>

12

13 <unit class="EUL" ID="11" pcsorder="3">
14 <to class="EU2" ID="2" />

15 </unit>

16

17 <unit class="EU2" ID="2" pcsorder="1" />
18

19 </definition>

20 </domain>

21 </openfluid>

2.2.2.2 Attributes

The spatial attributes are static data associated to each spatial unit, usually properties and initial conditions.
The spatial domain attributes must be defined in a section delimited by the <attributes> tag, which is
a sub-section of the domain tag, and must be structured following these rules:

» The <attributes> tag must bring an unitsclass attribute giving the unit class to which the
attributes must be attached, and a colorder attribute giving the order of the contained column-
formatted data

* Inside the <attributes> tag, there must be the attributes as row-column text. As a rule,
the first column is the ID of the unit in the class given through the unitsclass attribute of
<attributes> tag, the following columns are values following the column order given through
the colorder attribute of the <attributes> tag. Values for the data can be real, integer,
string, vector or matrix.

1 <?xml version="1.0" standalone="yes"?>
2 <openfluid>

3 <domain>
4

OpenFLUID in a nutshell

2.2 Sections 11

5
6
7
8

9

10
11
12
13
14

<attributes unitsclass="EUl" colorder="indataA">
3 1.1
11 7.5

</attributes>

<attributes unitsclass="EU2" colorder="indataBl; indataB3">
2 18 STRVALX

</attributes>

</domain>

15 </openfluid>

2.2.2.3 Discrete events

The discrete events are events occurring on units, and can be processed by simulators. The spatial events
must be defined in a section delimited by the <calendar> tag, which is a sub-section of the <domain>
tag, and must be structured following these rules:

Inside the <calendar> tag, there must be a set of <event > tags

Each <event > tag must bring an unitID and an unitsclass attribute giving the unit on which
occurs the event, a date attribute giving the date and time of the event. The date format must be
"YYYY-MM-DD hh:mm:ss".

Each <event> tag may include zero to many <info> tags.

Each <info> tag give information about the event and must bring a key attribute giving the name
(the "key") of the info, and a value attribute giving the value for this key.

1 <?xml version="1.0" standalone="yes"?>
2 <openfluid>

3

0 ~J o U Wb

9

10
11
12
13
14
15
16
17
18
19
20
21
22

<domain>
<calendar>

<event unitsclass="EUl" unitID="11" date="1999-12-31 23:59:59">
<info key="when" value="before" />
<info key="where" value="1" />
<info key="varl" value="1.13" />
<info key="var2" value="EADGBE" />
</event>
<event unitsclass="EU2" unitID="3" date="2000-02-05 12:37:51">
<info key="var3" value="152.27" />
<info key="vard4" value="XYZ" />
</event>
<event unitsclass="EUL" unitID="11" date="2000-02-25 12:00:00">
<info key="varl" value="1.15" />
<info key="var2" value="EADG" />
</event>

</calendar>
</domain>

23 </openfluid>

2.2.3 Datastore section

The datastore lists external data which is available during the simulation. The datastore content must be
defined in a section delimited by the <datastore> tag, and must be structured following these rules:

Inside the <datastore> tag, there must be a set of <dataitem> tags

OpenFLUID in a nutshell

12 Format of input datasets

» Each <dataitem> tag must bring an ID attribute giving the unique identifier of the dataitem, a
type attribute giving the type of the dataitem (only the geovector and georaster types are currently
available), and a source attribute giving the source of the dataitem. An optional unitsclass
attribute is possible for giving the spatial unit class associated to the data.

1 <?xml version="1.0" standalone="yes"?>
2 <openfluid>

3 <datastore>

4

5 <dataitem id="TUlayer" type="geovector" source="TestUnits_wgs84.shp"
6 unitsclass="TestUnits" />

7 <dataitem id="Ground" type="geovector" source="data/ground.shp" />

8 <dataitem id="Ground" type="georaster" source="data/DEM.tiff" />

9
10 </datastore>
11 </openfluid>

2.2.4 Monitoring section

The monitoring is defined by a set of observers that will be automatically plugged and executed by the
OpenFLUID environment. Observers are usually used for exporting formatted data from the simulation or
performs continuous control during the simulation.

Note

OpenFLUID provides observers for exporting data to CSV formatted files, KML formatted files (for use
with Google Earth), and DOT formatted files (for graph representations).

The monitoring must be defined in a section delimited by the <monitoring> tag, and must be structured
following these rules:
* Inside the <monitoring> tag, there may be a set of <observer> tags

» Each <observer> tag must bring an ID attribute giving the identifier of the observer; the value of
the ID attribute must match the ID of an available and pluggable observer.

» Each <observer> tag may include zero to many <param> tags giving parameters to the ob-
server. Each <param> tag must bring a name attribute giving the name of the parameter and a
value attribute giving the value of the parameter. These parameters can be scalar or vector of
integer values, floating point values, string values.

Note
Refer to observers signatures for details about specific parameters for each observer.

1 <?xml version="1.0" standalone="yes"?>
2 <openfluid>

3 <monitoring>

4

5 <observer ID="export.vars.files.csv">

6 <param name="format.fl.header" value="colnames-as-comment" />
7 <param name="format.fl.date" value="%Y-%m-%d %H:%M:%S" />

8 <param name="format.fl.precision" value="8" />

9

10 <param name="format.f2.header" value="full" />

11

12 <param name="set.sl.unitsclass" value="TestUnits" />

OpenFLUID in a nutshell

2.2 Sections 13

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

<param name="set.sl.unitsIDs" value="*" />
<param name="set.sl.vars" value="x" />
<param name="set.sl.format" value="f1" />

<param name="set.s2.unitsclass" value="TestUnits" />
<param name="set.s2.unitsIDs" value="5;3;11" />
<param name="set.s2.vars" value="tests.double;tests.string" />
<param name="set.s2.format" value="f2" />
</observer>

<observer ID="export.vars.files.kml-anim" >
<param name="layers.anim.unitsclass" value="TestUnits" />
<param name="layers.anim.varname" value="tests.double" />
<param name="layers.anim.sourcetype" value="file" />
<param name="layers.anim.sourcefile" value="TestUnits_wgs84.shp" />
<param name="layers.anim.linewidth" value="4" />
<param name="layers.anim.colorscale"
value="ff00£f£f00;14;ff00£f£76;18; ff00ffdc;22;£f00faff;26;££f0099ff;28; ££001cff"/>

<param name="layers.static.l.unitsclass" value="OtherUnits" />
<param name="layers.static.l.sourcetype" value="file" />
<param name="layers.static.l.sourcefile" value="OtherUnits_wgs84.shp" />
<param name="layers.static.l.linewidth" value="3" />
<param name="layers.static.l.color" value="ffffffff" />
</observer>

</monitoring>

40 </openfluid>

Warning

There must be only one monitoring definition in the input dataset.

2.2.5 Run configuration section

The configuration of the simulation gives the simulation period, the default coupling time step and the op-
tional coupling constraint. The run configuration must be defined in a section delimited by the <run> tag,
and must be structured following these rules:

1

Inside the <run> tag, there must be a <scheduling> tag giving the scheduling informations of
the model coupling.

The <scheduling>tag mustbringa deltat attribute giving the number of second for the default
DeltaT time step, and a constraint attribute giving an optional constraint applied to the coupling.
The values for the constraint attribute can be none for no constraint, dt —checked to check
that coupling is synchronized with the default DeltaT time step, dt —forced to force coupling at the
default DeltaT time step ignoring the scheduling requests from simulators or generators.

Inside the <run> tag, there must be a <period> tag giving the simulation period.

The <period> tag must bring a begin and an end attributes, giving the dates of the beginning
and the end of the simulation period. The date format for these attributes must be YYYY-MM-DD
hh:mm:ss

Inside the <run> tag, there may be a <valuesbuffer> tag for the number of produced values
kept in memory. The number of values is given through a size attribute. If not present, all values
are kept in memory.

<?xml version="1.0" standalone="yes"?>

OpenFLUID in a nutshell

14 Format of input datasets

2 <openfluid>

3 <run>

4

5 <scheduling deltat="3600" constraint="none" />

6 <period begin="2000-01-01 00:00:00" end="2000-06-30 23:59:00" />
7

8 <valuesbuffer size="10" />

9

10 </run>

11 </openfluid>

2.3 Runtime variables in parameters

Parameters of simulators and observers can include variables that will be replaced by corresponding values
at runtime. These variables are :

* ${dir.input} is replaced by the complete path to the input dataset directory
* ${dir.output} is replaced by the complete path to the output results directory

+ S{dir.temp} is replaced by the complete path to the directory dedicated to temporary files

1 <?xml version="1.0" standalone="yes"?>

2 <openfluid>

3 <model>

4

5 <gparams>

6 <param name="globaldata" value="${dir.input}/data/global” />
7 </gparams>

8

9 <simulator ID="example.simulatorA" >

10 <param name="temppath" value="${dir.temp}/simA" />
11 </simulator>

12
13 </model>
14 </openfluid>

2.4 Example of an input dataset as a single FluidX file

1 <?xml version="1.0" standalone="yes"?>
2 <openfluid>

3

4 <model>

5 <gparams>

6 <param name="gparaml" value="100" />

7 <param name="gparam2" value="0.1" />

8 </gparams>

9 <simulator fileID="example.simulatorA" />

10 <generator varname="example.generator.fixed" unitsclass="EU1l"
11 method="fixed" varsize="11">

12 <param name="fixedvalue" value="20" />

13 </generator>

14 <generator varname="example.generator.random" unitsclass="EU2"
15 method="random">

16 <param name="min" value="20.53" />

17 <param name="max" value="50" />

18 </generator>

19 <simulator fileID="example.simulatorB">

20 <param name="paraml" value="strvalue" />

21 <param name="param2" value="1.1" />

OpenFLUID in a nutshell

2.4 Example of an input dataset as a single FluidX file

15

22 <param name="gparaml" value="50" />

23 </simulator>

24 </model>

25

26

27 <domain>

28

29 <definition>

30 <unit class="PU" ID="1" pcsorder="1" />

31 <unit class="EUL" ID="3" pcsorder="1">

32 <to class="EU1" ID="11" />

33 <childof class="PU" ID="1" />

34 </unit>

35 <unit class="EUL" ID="11" pcsorder="3">

36 <to class="EU2" ID="2" />

37 </unit>

38 <unit class="EU2" ID="2" pcsorder="1" />

39 </definition>

40

41 <attributes unitsclass="EUl" colorder="indataA">

42 3 1.1

43 11 7.5

44 </attributes>

45

46 <attributes unitsclass="EU2" colorder="indataBl; indataB3">
47 2 18 STRVALX

48 </attributes>

49

50 <calendar>

51 <event unitsclass="EUL" unitID="11" date="1999-12-31 23:59:59">
52 <info key="when" value="before" />

53 <info key="where" value="1" />

54 <info key="varl" value="1.13" />

55 <info key="var2" value="EADGBE" />

56 </event>

57 <event unitsclass="EU2" unitID="3" date="2000-02-05 12:37:51">
58 <info key="var3" value="152.27" />

59 <info key="var4" value="XYZ" />

60 </event>

61 <event unitsclass="EULl" unitID="11" date="2000-02-25 12:00:00">
62 <info key="varl" value="1.15" />

63 <info key="var2" value="EADG" />

64 </event>

65 </calendar>

66

67 </domain>

68

69

70 <run>

71 <scheduling deltat="3600" constraint="none" />

72 <period begin="2000-01-01 00:00:00" end="2000-06-30 23:59:00" />
73 <valuesbuffer size="10" />

74 </run>

75

76

77 <monitoring>

78 <observer ID="export.vars.files.csv">

79 <param name="format.fl.header" value="colnames—as—comment" />
80 <param name="format.fl.date" value="$Y-%m-%d %H:%M:%S" />
81 <param name="format.fl.precision" value="8" />

82 <param name="format.f2.header" value="full" />

83 <param name="set.sl.unitsclass" value="TestUnits" />

84 <param name="set.sl.unitsIDs" value="*" />

85 <param name="set.sl.vars" value="x" />

86 <param name="set.sl.format" value="f1" />

87 <param name="set.s2.unitsclass" value="TestUnits" />

88 <param name="set.s2.unitsIDs" value="5;3;11" />

OpenFLUID in a nutshell

16 Format of input datasets

89 <param name="set.s2.vars" value="tests.double;tests.string" />

90 <param name="set.s2.format" value="f2" />

91 </observer>

92 <observer ID="export.vars.files.kml-anim" >

93 <param name="layers.anim.unitsclass" value="TestUnits" />

94 <param name="layers.anim.varname" value="tests.double" />

95 <param name="layers.anim.sourcetype" value="file" />

96 <param name="layers.anim.sourcefile" value="TestUnits_wgs84.shp" />

97 <param name="layers.anim.linewidth" value="4" />

98 <param name="layers.anim.colorscale"

99 value="ff00f£f00;14;ff00f£f76;18; ff00ffdc;22;£f00faff;26;£f£f0099ff;28; f£001cff"/>
100 <param name="layers.static.l.unitsclass" value="OtherUnits" />

101 <param name="layers.static.l.sourcetype" value="file" />

102 <param name="layers.static.l.sourcefile" value="OtherUnits_wgs84.shp" />
103 <param name="layers.static.l.linewidth" value="3" />

104 <param name="layers.static.l.color" value="ffffffff" />

105 </observer>

106 </monitoring>

107

108 </openfluid>

OpenFLUID in a nutshell

Part Il

Development of OpenFLUID simulators

Chapter 3

Overview of an OpenFLUID simulator

Technically speaking, an OpenFLUID simulator is made of two main parts: The signature and a C++ class
containing the computational code. These two parts have to be developped in a C++ file (.cpp). They must
be compiled before using it in the OpenFLUID environment.

3.1 Simulator signature

The signature of a simulator contains meta-informations about the simulator. These informations will be
mainly used for automatic coupling and consistency checking of simulators. To get more informations about
the simulators signatures, see part Declaration of the simulator signature.

3.2 Simulator C++ class

The computational part of a simulator is defined by a class, inherited from the openfluid::ware::PluggableSimulator
class. The simulation code have to be written into the different methods provided by the open-
fluid::ware::PluggableSimulator class. You can also develop other methods in order to organize your

source code.

To get more information about the C++ class of a simulator, see part Creation of an empty simulator.

3.2.1 Constructor and destructor

The constructor of the simulator is called when the simulator is loaded. You may put here the initialization of
your private members.

The destructor of the simulator is called when the simulator is released after simulation, at the end of the
execution of the OpenFLUID application. You may put here instruction to free the memory you allocated for
the needs of the computational code (other objects, pointed vars, ...).

3.2.2 Mandatory methods to be defined
The class of a simulator must define the following methods:

* initParams

 prepareData

20 Overview of an OpenFLUID simulator

+ checkConsistency
+ initializeRun
* runStep

« finalizeRun

The initParams method should be used to retreive the parameters of the simulator, read from the
model.fluidx file or filled from the OpenFLUID-Builder interface (See Model section). Once read, the val-
ues should be stored into private attributes to be accessed by other methods.

The prepareData method should be used to do data pre-processing before the consistency checking.

The checkConsistency method is called during the global consistency checking phase. It should be used
to add specific consistency checking for the simulator.

The initializeRun method must be used for initialization of simulation variables, or to compute initialization
data.

The runStep method is called at each exchange time step. It should contain the computational code.

The finalizeRun method should be used to do post-processing after simulation. It is the last method ran.

OpenFLUID in a nutshell

Chapter 4

Creation of an empty simulator

As mentioned in the previous section (see Overview of an OpenFLUID simulator), a simulator must contain
two parts :

« A signature giving information about the simulator, and used by the OpenFLUID framework to identify
and couple simulators

» A C++ class defining essential methods for computational code

41 Required tools for development environment

In order to build and develop a simulator, the following tools are required:

» GCC as the C++/C/Fortran compiler (version 4.8 or later for C++11 compatibility)
+ CMake as the build configuration tool (version 2.8.12 or later).

OpenFLUID provides a CMake module to ease the build of simulators.

These tools are also required when using the OpenFLUID-DevStudio application. Detailed in-
structions for installation of these tools are available on the OpenFLUID Community web site
(http://www.openfluid-project.org/community).

The OpenFLUID-DevStudio is the recommended environment for simulators development, and is the only
one which is officially supported for OpenFLUID wares development.

4.2 Writing the signature

The simulator signature is a set of informations about the content and behaviour of the simulator source
code. With these informations, the OpenFLUID framework can evaluate the simulator, have information on
what it does, on what it expects and produces, and can load it dynamically.

The informations included in the signature are :

+ Identification
+ Development information

+ Expected parameters

http://www.openfluid-project.org/community

22 Creation of an empty simulator

+ Expected variables and spatial attributes
» Produced variables and spatial attributes
+ Spatial graph updates

» Time step behaviour

Usually, the signature is declared and implemented at the beginning of the .cpp file. It starts with the BE-
GIN_SIMULATOR_SIGNATURE macro and ends with the END_SIMULATOR_SIGNATURE macro. The
minimal signature must include identification information. See part Declaration of the simulator signature
for details on how to write the signature.

4.3 Writing the C++ class for the simulator

The C++ class integrates the computational code of the simulator, corresponding to successive stages of
simulations. You will find a Complete example below, giving an overview of the source code of an empty
simulator. The Development of the simulator source code part gives details about how to develop the
computational code in the simulator.

4.4 Building the simulator

Any OpenFLUID simulator must be compiled using the GCC C++ compiler (g++) and must be linked to the
OpenFLUID libraries and dependencies.

The recommended way to build your simulator is to use the CMake build system with the OpenFLUID
CMake module, and provide CMake configuration files (CMakeLists.txt, CMake.in.config).

These operations can be performed automatically using the OpenFLUID-DevStudio application.

These operations can also be performed manually, with the following steps:
1. Create a build directory in your source directory (e.g. _build)
2. Go to this build directory

3. Run the cmake .. command, with the optional -DCMAKE_BUILD_TYPE=Debug directive for
debugging mode

4. Run the build command (e.g. make)

These steps are for Linux systems, and must be slightly adapted for other systems.

OpenFLUID in a nutshell

4.5 Complete example 23

4.5 Complete example

The example below show a complete example of an empty simulator, including source code and build
configuration using the OpenFLUID CMake module.

4.5.1 File ExampleSimulator.cpp containing the simulator source code

#include <openfluid/ware/PluggableSimulator.hpp>

//
//

BEGIN_SIMULATOR_SIGNATURE ("example.simulator")

DECLARE_NAME ("Example simulator");
DECLARE_DESCRIPTION ("This simulator is an example");
DECLARE_VERSION ("14.07");
DECLARE_STATUS (openfluid: :ware: : EXPERIMENTAL) ;

DECLARE_AUTHOR ("John", "john@foobar.org") ;

DECLARE_AUTHOR ("Dave", "dave@foobar.org") ;

DECLARE_AUTHOR ("Mike", "mike@foobar.org");
END_SIMULATOR_SIGNATURE

//
//

class ExampleSimulator : public openfluid::ware::PluggableSimulator
{

private:
public:
Example () : PluggableSimulator ()

{

// Here 1is source code for constructor

//
//

~Example ()
{

// Here is source code for destructor

// - ——-
//

void initParams (const openfluid::ware::WareParams_t& /+«Paramsx*/)
{

// Here 1s source code for processing simulator parameters

OpenFLUID in a nutshell

24

Creation of an empty simulator

Vi

//

//

void prepareData ()

{

// Here is source code for data preparation

//

//

void checkConsistency ()

{

// Here is source code for specific consistency checking

//

//

openfluid: :base::SchedulingRequest initializeRun ()

{

// Here is source code for initialization

return DefaultDeltaT();

//

//

openfluid: :base::SchedulingRequest runStep ()
{

// Here is source code for each step run

return DefaultDeltaT();

//

//

void finalizeRun ()

{

// Here is source code for finalization

DEFINE_SIMULATOR_CLASS (ExampleSimulator) ;

4.5.2 File CMake.in.config containing the build configuration

Simulator ID
ex: SET(SIM_ID "my.simulator.id")
SET (SIM_ID "example.simulator")

OpenFLUID in a nutshell

4.5 Complete example

list of CPP files, the sim2doc tag must be contained in the first one
ex: SET(SIM_CPP MySimulator.cpp)
SET (SIM_CPP ExampleSimulator.cpp)

list of Fortran files, 1if any
ex: SET (SIM_FORTRAN Calc.f)
#SET (SIM_FORTRAN)

list of extra OpenFLUID libraries required
ex: SET (SIM_OPENFLUID_COMPONENTS tools)
SET (SIM_OPENFLUID_COMPONENTS)

set this to add include directories
ex: SET(SIM_INCLUDE_DIRS /path/to/include/A/ /path/to/include/B/)
#SET (SIM_INCLUDE_DIRS)

set this to add libraries directories
ex: SET(SIM_INCLUDE_DIRS /path/to/libA/ /path/to/1ibB/)
#SET (SIM_LIBRARY_DIRS)

set this to add linked libraries
ex: SET(SIM_LINK_LIBS 1libA 1ibB)
#SET (SIM_LINK_LIBS)

set this to add definitions
ex: SET(SIM_DEFINITIONS "-DDebug")
#SET (SIM_DEFINITIONS)

unique ID for linking parameterization UI extension (if any)
#SET (WARE_LINK_UID "{ —XXXX— - —-XX 1)

set this to ON to enable parameterization widget
ex: SET (SIM_PARAMSUI_ENABLED ON)
SET (SIM_PARAMSUI_ENABLED OFF)

list of CPP files for parameterization widget, if any
ex: SET(SIM_PARAMSUI_CPP MyWidget.cpp)
SET (SIM_PARAMSUI_CPP)

list of UI files for parameterization widget, if any
ex: SET (SIM_PARAMSUI_UI MyWidget.ui)
SET (SIM_PARAMSUI_UI)

list of RC files for parameterization widget, if any
ex: SET(SIM_PARAMSUI_RC MyWidget.rc)
SET (SIM_PARAMSUI_RC)

set this to ON to enable translations
#SET (SIM_TRANSLATIONS_ENABLED ON)

set this to list the languages for translations
#SET (SIM_TRANSLATIONS_LANGS fr_FR)

set this to list the extra files or directories to scan for strings to translate

#SET (SIM_TRANSLATIONS_EXTRASCANS)

set this to force an install path to replace the default one
#SET (SIM_INSTALL_PATH "/my/install/path/")

set this to ON or AUTO for build of simulator documentation using sim2doc
SET (SIM_SIM2DOC_MODE ON)

OpenFLUID in a nutshell

26 Creation of an empty simulator

#set to ON to disable installation of sim2doc built documentation
SET (SIM_SIM2DOC_INSTALL_DISABLED OFF)

set this if you want to use a specific sim2doc template

#SET (SIM_SIM2DOC_TPL "/path/to/template")

set this if you want to add tests

given tests names must be datasets placed in a subdir named "tests"

each dataset in the subdir must be names using the test name and suffixed by .IN
ex for tests/test0l1.IN and tests/test02.IN: SET(SIM_TESTS_DATASETS test0l test02)
#SET (SIM_TESTS_DATASETS)

4.5.3 File CMakeLists.txt defining the build process

CMAKE_MINIMUM_REQUIRED (VERSION 2.8.12)
INCLUDE (CMake.in.confiqg)
FIND_PACKAGE (OpenFLUIDHelpers REQUIRED)

OPENFLUID_ADD_SIMULATOR (SIM)

OpenFLUID in a nutshell

Chapter 5

Declaration of the simulator signature

The signature has to be defined between the BEGIN_SIMULATOR_SIGNATURE and the END_SIMULATOR_SIGNATURE
macros.

5.1 Identification

The identification part of the signature must contain at least the ID of the simulator. This ID will be
used by the framework to load simulators. It is declared in the signature as an argument of the BE-
GIN_SIMULATOR_SIGNATURE macro.

Other optional informations can be included for better description of the simulator:

+ the simulator name, declared through the DECLARE_NAME macro, allowing to assign a long name
to the simulator

the simulator description, declared through the DECLARE_DESCRIPTION macro, allowing to provide
a detailed description of what the simulator actually does

the name(s) of the author(s) and her/his email address, declared through the DECLARE_AUTHOR
macro. There may be multiple DECLARE_AUTHOR macros in the signature in case of multiple
authors

the software version of the simulator, declared through the DECLARE_VERSION macro

the software status of the simulator, declared through the DECLARE_STATUS macro. The value can
be openfluid::ware::EXPERIMENTAL, openfluid::ware::BETA or openfluid::ware::STABLE

See the Complete signature example part for detailed example.

5.2 Informations about scientific application

The informations about scientific applications is only indicative. It has no effects on simulator consistency or
computational code. These informations can be :

+ the domain in which the simulator can be applied, declared through the DECLARE_DOMAIN macro
+ the processes simulated by the simulator, declared through the DECLARE_PROCESS macro
+ the numerical methods used by the simulator, declared through the DECLARE_METHOD macro

28 Declaration of the simulator signature

5.3 Data and spatial graph

The data used by the simulators can be:

» Parameters that are attached to the simulator
+ Spatial attributes that are attached to spatial units, giving properties about the spatial units

» Simulation variables that are attached to spatial units, representing the resulting dynamics of modeled
processes over the spatial units

» Discrete events that are attached to spatial units, representing the events occurring at a given date
and time on a given spatial unit

+ Specific file(s) loaded by the simulator
These data can be accessed, appended and/or modified by the simulator.

The spatial graph representing the landscape can also be accessed or modified by simulators during
simulations.

The declarations of spatial data access include constraint levels:

+ REQUIRED, this means that the data must be available or already produced

« USED, this means that the data are used only if they are available or already produced

5.3.1 Simulator parameters

Simulator parameters are values provided to each simulator, and are declared using the DE-
CLARE_REQUIRED_PARAMETER or DECLARE_USED_PARAMETER macros. These macros takes
3 arguments

+ the name of the parameter
+ the description of the parameter (may be empty)

+ the Sl unit of the parameter (may be empty)
Example of a simulator parameter declaration:

DECLARE_REQUIRED_PARAMETER ("meanspeed", "mean speed to use","m/s")

5.3.2 Spatial attributes

Spatial attributes are constant properties attached to each spatial units, and are declared using DE-
CLARE_REQUIRED_ATTRIBUTE or DECLARE_USED_ATTRIBUTE macros

These macros take 4 arguments:

» the name of the attribute
* the units class

+ the description of the attribute (may be empty)

OpenFLUID in a nutshell

5.3 Data and spatial graph 29

« the Sl unit of the attribute (may be empty)
Example of attributes declaration:

DECLARE_REQUIRED_ATTRIBUTE ("area","TU", "area of the Test Units","m")
DECLARE_USED_ATTRIBUTE ("landuse", "OU", "landuse of the Other Units","")

5.3.3 Simulation variables

Simulation variables are attached to spatial units. They are produced, accessed and modified by simulators
during simulations.

Accessed variables are declared using DECLARE_REQUIRED_VARIABLE or DECLARE_USED_VARIABLE
macros, produced variables are declared using DECLARE_PRODUCED_VARIABLE macro, updated vari-
ables are declared using DECLARE_UPDATED_VARIABLE macro.

These macros take 4 arguments:

» the name of the variable
 the concerned unit class
+ the description of the variable (may be empty)

+ the Sl unit of the variable (may be empty)

These variables can be typed or untyped. When they are declared in the signature, the variable names
suffixed by the [] symbol with a type name enclosed are typed, i.e. each value for the variable must match
the type of the variable. If no type is mentioned, values for the variable can be of any type.

In case of typed variables, the type of a required or used variable by a simulator must match the type of the
variable set when it is produced.

The type name for a declaration of a variable can be:

* boolean for boolean values

* integer for long integer values

» double for double precision values
* string for string values

» vector for vector data

+ matrix for matrix data

» map for associative key-value data

» tree for hierarchical key-value data
These scenarios of variable exchanges between two A and B simulators run successfully:

 simulator A produces an untyped variable var1, simulator B requires/uses/updates an untyped vari-
able var1

+ simulator A produces a typed variable var1, simulator B requires/uses/updates an untyped variable
vari

OpenFLUID in a nutshell

30 Declaration of the simulator signature

+ simulator A produces a typed variable var1 of type double, simulator B requires/uses/updates a
typed variable var1 of type double

These scenarios of variable exchanges between two simulators are failing:

+ simulator A produces an untyped variable var1, simulator B requires/uses/updates a typed variable
vari

+ simulator A produces a typed variable var1 of type double, simulator B requires/uses/updates a
typed variable var1 of type matrix

Example of variable declarations:

DECLARE_REQUIRED_VARIABLE ("varA[double]","TU","", "m")
DECLARE_USED_VARIABLE ("varB", "OU", "simple var on Other Units","kg")
DECLARE_PRODUCED_VARIABLE ("VarB[vector]", "TU", "vectorized var on Test Units","kg")

DECLARE_UPDATED_VARIABLE ("VarC","TU","","")

5.3.4 Discrete events

Discrete events are attached to spatial units, They are accessed or appended by simulators during simula-
tions, and are declared using the DECLARE_USED_EVENTS macro.
The declaration macro takes 1 argument: the units class.

Example of events declaration:

DECLARE_USED_EVENTS ("TU")

5.3.5 Extrafiles

Simulators can declare files that they load and manage. This helps users to provide the needed files, and
also notifies the OpenFLUID framework to check the presence of the file if it is required.

These files are declared using the DECLARE_USED_EXTRAFILE or DECLARE_REQUIRED_EXTRAFILE
macros.

The declaration macro takes 1 argument: the file name with relative path to the dataset path.

Example of extra file declarations:

DECLARE_USED_EXTRAFILE ("fileA.dat")
DECLARE_REQUIRED_EXTRAFILE ("geo/zone.shp")

5.3.6 Spatial units graph

The spatial units graph representing the landscape can be modified by simulators. These modifications are
declared in the signature function using two macros.

The DECLARE_UPDATED_UNITSGRAPH macro is used for declaration of the global units graph modifi-
cation that will occur during simulation. It is for information purpose only, and takes a description as a single
argument.

The DECLARE_UPDATED_UNITSCLASS macro is used for declaration of units classes that will be af-
fected, and how. It takes two arguments:

* the units class

OpenFLUID in a nutshell

5.4 Complete signature example

31

+ the description of the update (may be empty)
Example of declarations for spatial units graph:

DECLARE_UPDATED_UNITSGRAPH ("update of the spatial graph for ...")
DECLARE_UPDATED_UNITSCLASS ("TU","")

5.4 Complete signature example

The signature code below shows an example of a possible signature for a simulator.

BEGIN_SIMULATOR_SIGNATURE ("example.simulator")

DECLARE_NAME ("Example simulator");
DECLARE_DESCRIPTION ("This simulator is an example");
DECLARE_VERSION ("13.05");
DECLARE_STATUS (openfluid: :ware: : EXPERIMENTAL) ;
DECLARE_AUTHOR ("John", "john@foobar.org") ;
DECLARE_AUTHOR ("Dave", "dave@foobar.org") ;
DECLARE_AUTHOR ("Mike", "mike@foobar.org");

DECLARE_USED_PARAMETER ("meanspeed", "mean speed to use","m/s")

DECLARE_REQUIRED_ATTRIBUTE ("area", "TU", "area of the Test Units","m")
DECLARE_USED_ATTRIBUTE ("landuse", "OU", "landuse of the Other Units","")

DECLARE_REQUIRED_VARIABLE ("varA[double]","TU","", "m")
DECLARE_USED_VARIABLE ("varB", "OU", "simple var on Other Units","kg")
DECLARE_PRODUCED_VARIABLE ("VarB[vector]", "TU", "vectorized var on Test Units","kg")
DECLARE_UPDATED_VARIABLE ("Varc","TUu","", "m

DECLARE_USED_EVENTS ("TU")

END_SIMULATOR_SIGNATURE

OpenFLUID in a nutshell

32

Declaration of the simulator signature

OpenFLUID in a nutshell

Chapter 6

Development of the simulator source code

6.1 General information about simulators architecture

6.1.1 Simulator methods sequence and framework interactions

As mentioned in the previous section, a simulator is a C++ class which defines mandatory methods (see
Mandatory methods to be defined). These methods are called by the OpenFLUID framework at the right
time during the simulation, following the interactions sequence in the figure below.

Loading of
the input dataset

\

Preparation of

the simulation ___‘_‘—'—-—-—-—-_.______b

Beginning *—

of the simulation

Management of — _________—»

the simulation - o -

\

End of *—

the simulation
+
final processing

Framework
OpenFLUID

Figure 6.1: Interactions sequence between the OpenFLUID framework and the simulators

34 Development of the simulator source code

Among these methods, the initializeRun() and runStep() methods have a special behaviour: these two
methods must return the simulation time when the simulator will be called again.
This simulation time can be

+ Duration() to be called in a number of seconds given as parameter
+ DefaultDeltaT() to be called in a number of seconds given as default DeltaT in the input dataset

+ MultipliedDefaultDeltaT() to be called in a number of seconds given as default DeltaT in the input
dataset, multiplied by a the value given as parameter

AtTheEnd() to be called only once at the end of simulation duration
* Never() to never be called again

Example for a fixed time step simulator, with a time step equal to the default DeltaT value given in the input
dataset:

openfluid: :base::SchedulingRequest initializeRun()

{
// do something here

DefaultDeltaT () ;
}

openfluid::base::SchedulingRequest runStep ()
{

// do something here

DefaultDeltaT () ;

Example for a variable time step simulator, based on the internal computation of the simulator:

openfluid: :base::SchedulingRequest initializeRun ()

{

// do something here

DefaultDeltaT () ;
}

openfluid: :base::SchedulingRequest runStep ()
{
double TmpValue = 0.0;

// do something here with TmpValue

(TmpValue < 1.0)
DefaultDeltaT () ;

Duration (10);

For fully synchronized coupled simulators, all simulators must return the same duration for the next calling,
usually DefaultDeltaT() .

6.1.2 OpenFLUID data types

Simulation data exchanged through the OpenFLUID framework should be typed with an OpenFLUID defined

type.
The available simple types are:

OpenFLUID in a nutshell

6.2 Handling the spatial domain 35

+ openfluid::core::BooleanValue for storing boolean values
+ openfluid::core::IntegerValue for storing long integer values
+ openfluid::core::DoubleValue for storing double precision values

+ openfluid::core::StringValue for storing string values
The available compound types are:

+ openfluid::core::VectorValue for storing vector data
+ openfluid::core::MatrixValue for storing matrix data
+ openfluid::core::MapValue for storing associative key-value data

» openfluid::core::TreeValue for storing hierarchical key-value data
A specific type is available for storing non-existing values:

+ openfluid::core::NullValue

Simulation data are stored using these types :

+ Simulation variables : stored as their native type
 Spatial attributes : stored as their native type
» Simulator parameters : stored as openfluid::core::StringValue, and can be converted to any other type

+ Informations associated to events : stored as openfluid::core::StringValue, and can be converted to
any other type

Each data type can be converted to and from openfluid::core::StringValue (as far as the string format is
correct). String representations of values are (see String representation of values)

Simulation variables can be typed or untyped. This is set at the declaration of these variables (see Simulation
variables).

In case of typed variables, each value of the variable must be of the type of the variable. In case of untyped
variables, values for the variable can be of any type.

6.2 Handling the spatial domain

6.2.1 Parsing the spatial graph

The spatial graph represents the spatial domain where coupled simulators will operate. Parsing this graph
in different ways is a common task in simulators. This graph can be browsed using predefined macros.

OpenFLUID in a nutshell

36 Development of the simulator source code

6.2.1.1 Sequential parsing
Spatial units can be parsed following the process order by using the following OpenFLUID macros:

+ OPENFLUID_UNITS_ORDERED_LOOP for parsing spatial units of a given units class

+ OPENFLUID_ALLUNITS_ORDERED_LOOP for parsing of all units in the spatial domain

To parse a specific list of of spatial units, you can use the macro:

+ OPENFLUID_UNITSLIST_LOOP

The source code below shows spatial graph parsing examples. The first part of the source code shows how
to browse all units of the SU units class, and how to browse the "From" units for each SU unit. The second
part of the source code shows how to browse all units of the spatial domain.

openfluid::base::SchedulingRequest runStep ()
{
openfluid::core::SpatialUnit* SU;
openfluid::core::SpatialUnit« UU;
openfluid::core::SpatialUnit* UpSU;
openfluid::core::UnitsPtrList_t* UpSUsList;
openfluid::core::DoubleValue TmpValue;

OPENFLUID_UNITS_ORDERED_LOOP ("SU", SU)
{
UpSUsList = SU->fromSpatialUnits ("SU");

OPENFLUID_UNITSLIST_LOOP (UpSUsList, UpSU)

{
// do something here

}
}

OPENFLUID_ALLUNITS_ORDERED_LOOP (UU)
{
// do something here

}

DefaultDeltaT () ;

6.2.1.2 Parallel processing using multithreading

A process defined as a method of a simulator class can be applied in parallel to the spatial graph, following
the process order, using the following methods:

+ APPLY_UNITS_ORDERED_LOOP_THREADED for applying a process to a given units class. Extra
arguments can be passed (see example below).

* APPLY_ALLUNITS_ORDERED_LOOP_THREADED for applying a process to a all units of the
spatial domain. Extra arguments can also be passed (see example below).

The first argument of the method passed to the macro must be a pointer to an openfluid::core::SpatialUnit
as it represents the currently processed spatial unit.

OpenFLUID in a nutshell

6.2 Handling the spatial domain 37

The code below shows how to apply a method in parallel over the spatial graph:

void computeA (openfluid::core::SpatialUnitx U)
{

// compute something

// can use/produce variables

}

void computeB (openfluid::core::SpatialUnitx U,
const double Coeff)
{
// compute something else, with extra args
// can use/produce variables

}
openfluid: :base::SchedulingRequest runStep ()
{

APPLY_UNITS_ORDERED_LOOP_THREADED ("SU",MySimulator: :computel) ;
APPLY_UNITS_ORDERED_LOOP_THREADED ("TU",MySimulator: :computeB, 2.5);

APPLY_ALLUNITS_ORDERED_LOOP_THREADED (MySimulator::computed);

DefaultDeltaT();

Please note:
« If a spatial loop is used inside other spatial loop, it is recommended to use multithreading in only one
loop.

* In case of concurrent data access, it is strongly recommended to use mutex locks for thread safe data
handling.

» Concurrent parsing using multithreading should improve computing performance, reducing simula-
tions durations. But in case of very short computing durations, the cost of multithreading management
may counterbalance the speed improvements of concurrent computing.

6.2.2 Querying the spatial graph

The spatial domain graph can be queried during simulations, in order to get informations about spatial units
and connections.

The following methods are available:

OPENFLUID_lIsUnitExist

OPENFLUID_IsUnitsClassExist
« OPENFLUID_GetUnit
- OPENFLUID_GetUnits

OPENFLUID_GetUnitsCount

OPENFLUID_IsUnitConnectedTo

OPENFLUID_IsUnitConnectedFrom

OpenFLUID in a nutshell

38 Development of the simulator source code

+ OPENFLUID_IsUnitChildOf
« OPENFLUID_IsUnitParentOf

6.2.3 Modifying the spatial graph

The spatial graph can be statically defined through the input dataset. It can also be defined and modified
dynamically during simulations, using primitives to create and delete spatial units, and also to add and
remove connections between these spatial units.

Although the creation, deletion and modification of connections are allowed at any stage of the simulation,
the creation, deletion and modification of spatial units are currently allowed only during the data preparation
stage (i.e. in the prepareData() method of the simulator).

For consistent use of simulators which modify the spatial domain graph, please fill the signature with the
correct directives. See Spatial units graph.

6.2.3.1 Creating and deleting spatial units
In order to create and delete units, you can use the following methods:

+ OPENFLUID_AddUnit

+ OPENFLUID_DeleteUnit

6.2.3.2 Adding and removing spatial connections

Connections between spatial units can be of two types:

» "From-To" connections, linking spatial units topologically. These connections are usually used in
"fluxes-like" processes.

+ "Parent-Child" connections, linking units hierarchically.

In order to add and remove connections, you can use the following methods, whenever during simulations:

OPENFLUID_AddFromToConnection

OPENFLUID_AddChildParentConnection

OPENFLUID_RemoveFromToConnection

+ OPENFLUID_RemoveChildParentConnection

Example:

void prepareData ()

{

/ *
TU.1 TU.2

-—> TU.22 <-—-

OpenFLUID in a nutshell

6.3 Informations about simulation time 39

--> TU.18
|
TU.52 —--> 0OU.5 <-- 0U.13

I
--> 0U.25

VUl <-> VU2

with:

TUl, TU2, TU22, TUl8 are children of VU1

TU52, 0OU5, 0OUl13, 0U25 are children of VU2
*/

OPENFLUID_AddUnit ("VU",1,1)
OPENFLUID_AddUnit ("VU",2,2);
OPENFLUID_AddUnit ("TU",1,1);
OPENFLUID_AddUnit ("TU",2,1)

’

14
OPENFLUID_AddUnit ("TU",22,2);
OPENFLUID_AddUnit ("TU", 18, 3);
OPENFLUID_AddUnit ("TU",52,1)
OPENFLUID_AddUnit ("OU",5,4);
OPENFLUID_AddUnit ("OU",13,1);
OPENFLUID_AddUnit ("OU",25,5) ;

’

OPENFLUID_AddFromToConnection ("VvU",1,"VU",2);

OPENFLUID_AddFromToConnection ("VU",2,"VU",1);

OPENFLUID_AddFromToConnection ("TU", 1, "TU",22);
OPENFLUID_AddFromToConnection ("TU", 2, "TU",22);
OPENFLUID_AddFromToConnection ("TU",22,"TU",18);
OPENFLUID_AddFromToConnection ("TU", 18, "OU",5);
OPENFLUID_AddFromToConnection ("TU", 52, "OU",5);
OPENFLUID_AddFromToConnection ("OU",13,"0U",5);
OPENFLUID_AddFromToConnection ("OU",5,"OU", 25);

OPENFLUID_AddChildParentConnection ("TU",1,"VU",1);
OPENFLUID_AddChildParentConnection ("TU",2,"VU",1);
OPENFLUID_AddChildParentConnection ("TU",22,"VU",1);
OPENFLUID_AddChildParentConnection ("TU",18,"VU",1);
OPENFLUID_AddChildParentConnection ("TU",52,"VU",2);
OPENFLUID_AddChildParentConnection("OU",5,"VU", 2);
OPENFLUID_AddChildParentConnection ("OU",13,"VU",2);
OPENFLUID_AddChildParentConnection ("OU",25,"VvU", 2);

6.2.3.3 Generating spatial domain graphs automatically

A spatial domain graph can be automatically built or extended using a provided method to create a matrix-
like graph:

+ OPENFLUID_BuildUnitsMatrix

6.3 Informations about simulation time

Simulators can access to informations about simulation time. There are constant time informations, such as
simulation duration or begin and end date, and evolutive informations such as current time index.

Constant time informations can be accessed from any part of the simulator (except from the constructor),
using the following methods:

+ OPENFLUID_GetBeginDate returns the beginning date of the simulation

OpenFLUID in a nutshell

40 Development of the simulator source code

+ OPENFLUID_GetEndDate returns the end date of the simulation
+ OPENFLUID_GetSimulationDuration returns the duration of the simulation (in seconds)

+ OPENFLUID_GetDefaultDeltaT returns the default time step of the simulation (in seconds), given in
the input dataset

Evolutive time informations can be accessed only from specific parts of the simulator, using the following
methods:

* OPENFLUID_GetCurrentTimelndex returns the current time index (in seconds) of the simulation,
and is available from the initializeRun(), runStep() and finalizeRun() methods of the simulator

* OPENFLUID_GetCurrentDate returns the current date of the simulation, and is available from the
initializeRun(), runStep() and finalizeRun() methods of the simulator

+ OPENFLUID_GetPreviousRunTimelndex returns the time index corresponding to the previous exe-
cution of the simulator, and is available from the runStep() and finalizeRun() methods of the simulator

Example of code:

openfluid::base::SchedulingRequest runStep ()

{
long int Duration = OPENFLUID_GetSimulationDuration();

long int CurrentIndex = OPENFLUID_GetCurrentTimeIndex () ;
openfluid::core::DateTime CurrentDT = OPENFLUID_GetCurrentDate();

DefaultDeltaT () ;

6.4 Simulator parameters

Simulators parameters can be accessed in the source code from the initParams method of the simulator.
Values of simulators parameters can be retreived using:

* OPENFLUID_GetSimulatorParameter.

The requested parameter name must be the same as the one used in the model.fluidx file (see Model
section), or be filled from the OpenFLUID-Builder graphical interface.

Example of initParams method:

void initParams (const openfluid::ware::WareParams_t& Params)

{
m_MyParam = 0; //default value
OPENFLUID_GetSimulatorParameter (Params, "myparam",m_MyParam) ;

}

To be reused in other part of the simulator, the variable storing a simulator parameter should be declared as
class member. The types of parameters can be string, double, integer, boolean, vector of string, vector of
double (see APl documentation of OPENFLUID_GetSimulatorParameter method to get more informations
about other available types, available on OpenFLUID web site).

OpenFLUID in a nutshell

6.5 Spatial attributes 4

6.5 Spatial attributes

In order to access or update values of spatial attributes, or to test if a spatial attribute is present, you can
use the following methods:

+ OPENFLUID_GetAttribute to get the value of an attribute
+ OPENFLUID_SetAttribute to set the value of an attribute

« OPENFLUID_lIsAttributeExist to test if an attribute exists

The methods to test if an attribute exists or to access to an attribute value are usable from any simulators
part except from the initParams() part. The methods to update an attribute value are only usable from the
prepareData() and checkConsistency() parts of the simulator.

The names of the attributes must match the names in the input dataset (see Spatial domain section), or the
name of an attribute created by a simulator.

Example of use:

openfluid::base::SchedulingRequest runStep ()
{
openfluid::core::SpatialUnit«* SU;
openfluid::core::DoubleValue AreaValue;

OPENFLUID_UNITS_ORDERED_LOOP ("SU", SU)
{
OPENFLUID_GetAttribute (SU, "area",AreaValue) ;

// continue with source code using the value of the area attribute
}
}

6.6 Simulation variables

The values for the simulation variables are attached to the spatial units.

The available methods to access to simulation variables are:

+ OPENFLUID_GetVariable to get the value of a variable at the current time index or at a given time
index

OPENFLUID_GetVariables to get values of a variable between two times indexes

OPENFLUID_GetLatestVariable to get the latest available value for the variable

OPENFLUID_GetLatestVariables to get the latest values of a variable since a given time index
The available methods to add or update a value of a simulation variable are:

+ OPENFLUID_AppendVariable to add a value to a variable for the current time index

+ OPENFLUID_SetVariable to update the value of a variable for the current time index
The available methods to test if a simulation variable exists are:

+ OPENFLUID_lIsVariableExist to test if a variable exists or if a value for this variable exists at the
given time index

OpenFLUID in a nutshell

42 Development of the simulator source code

+ OPENFLUID_IsTypedVariableExist to test if a variable exists or if a value for this variable exists at
the given time index, and its type matches the given type

These methods can be accessed only from the initializeRun(), runStep() and finalizeRun() parts of the
simulator.

Example:

openfluid: :base::SchedulingRequest runStep ()
{

openfluid::core::DoubleValue TmpValue;
openfluid::core::SpatialUnit«* SU;
OPENFLUID_UNITS_ORDERED_LOOP ("SU", SU)
{
OPENFLUID_GetVariable (SU, "MyVar", TmpValue) ;
TmpValue = TmpValue * 2;
OPENFLUID_AppendVariable (SU, "MyVarX2", TmpValue) ;
}

DefaultDeltaT () ;

6.7 Events

A discrete event is defined by the openfluid::core::Event class. It is made of a date and a set of key-value
informations that can be accessed by methods proposed by the openfluid::core::Event class.
A collection of discrete events can be contained in an openfluid::core::EventsCollection class.

A collection of events occuring during a period on a given spatial unit can be acessed using
* OPENFLUID_GetEvents

This method returns an openfluid::core::EventsCollection that can be processed.
The returned event collection can be parsed using the specific loop macro:

« OPENFLUID_EVENT_COLLECTION_LOOP

At each loop iteration, the next event can be processed.

An event can be added on a specific spatial unit at a given date using:
+ OPENFLUID_AppendEvent

Example of process of events occurring on the current time step:

openfluid: :base::SchedulingRequest runStep ()

{
openfluid::core::SpatialUnit«* TU;
openfluid::core::EventCollection EvColl;
openfluid::core::Eventx Ev;
std::list<openfluid::core::Event*x > *xEvList;
openfluid::core::DateTime BTime, ETime;

BTime = OPENFLUID_GetCurrentDate () ;

OpenFLUID in a nutshell

6.8 Internal state data 43

ETime = OPENFLUID_GetCurrentDate() - 86400;

OPENFLUID_UNITS_ORDERED_LOOP ("TU", TU)

{
OPENFLUID_GetEvents (TU,BTime, ETime, EvColl) ;
EvList = EvColl.getEventsList () ;

OPENFLUID_EVENT_COLLECTION_LOOP (EvColl.getEventsList (),Ev)

{
(Ev->isInfoEquals ("molecule", "glyphosate"))

{

// process the event

}

DefaultDeltaT () ;

6.8 Internal state data

In order to keep the status of the simulation function between calls (from the run step to the next one for
example), internal variables can be stored as class members. The class members are persistant during the
whole life of the simulator.

To store distributed values, data structures are available to associate a spatial unit ID to a storedvalue.
These data structures exist for different types of data:

openfluid::core::IDFloatMap

openfluid::core::IDDoubleMap

openfluid::core::IDIntMap

openfluid::core::IDBoolMap

openfluid::core::IDDoubleValueMap

openfluid::core::IDVectorValueMap

openfluid::core::IDVectorValuePtrMap

openfluid::core::IDSerieOfDoubleValueMap

openfluid::core::IDSerieOfDoubleValuePtrMap
Example of declaration of ID-map structures in private members of the simulator class:

class MySimulator : public openfluid::ware::PluggableSimulator
{
private:
openfluid::core::IDDoubleMap m_LastValue;

public:

// rest of the simulator class

Example of usage of the ID-map structures:

OpenFLUID in a nutshell

44 Development of the simulator source code

openfluid: :base::SchedulingRequest runStep()@tableofcontents
{

int ID;

double TmpValue;

openfluid::core::SpatialUnit«* SU;

OPENFLUID_UNITS_ORDERED_LOOP ("SU", SU)

{

ID = SU->getID();

TmpValue = TmpValue + m_LastValue[ID]
OPENFLUID_AppendVariable (SU, "MyVarPlus", TmpValue) ;

m_LastValue[ID] = TmpValue;

re rn DefaultDeltaT();

6.9 Runtime environment

The runtime environment of the simulator are informations about the context during execution of the simula-
tion: input and output directories, temporary directory,...
They are accessible from simulators using:

* OPENFLUID_GetRunEnvironment
Example:

openfluid::base::SchedulingRequest initializeRun()

{
std::string InputDir;

OPENFLUID_GetRunEnvironment ("dir.input", InputDir);
// the current input directory is now available through the InputDir local variable

return DefaultDeltaT();

The keys for requesting runtime environment information are:

« dir.input [string] : the current input directory

« dir.output [string] : the current output directory

« dirtemp [string] : the directory for temporary files

+ mode.cleanoutput [boolean] : cleaning output dir before data saving is enabled/disabled
» mode.saveresults [boolean] : result saving in output directory is enabled/disabled

» mode.writereport [boolean] : simulation report saving is enabled/disabled

6.10 Informations, warnings and errors

OpenFLUID in a nutshell

6.10 Informations, warnings and errors 45

6.10.1 Informations and warnings from simulators

Simulators can emit informations and warnings to both console and files using various methods

OPENFLUID_Displayinfo to display informative messages to console only

OPENFLUID_Loginfo to log informative messages to file only

+ OPENFLUID_LogAndDisplaylnfo to log and display informative messages simultaneously

OPENFLUID_DisplayWarning to display warning messages to console only

OPENFLUID_LogWarning to log warning messages to file only

+ OPENFLUID_LogAndDisplayWarning to log and display warning messages simultaneously

Using these methods is the recommended way to log and display messages. Please avoid using std::cout
or similar C++ facilities in production or released simulators.

Example:

openfluid: :base::SchedulingRequest runStep ()

{
openfluid::core::SpatialUnit* TU;

OPENFLUID_UNITS_ORDERED_LOOP ("TestUnits", TU)

{
OPENFLUID_LogInfo ("TestUnits #" << TU->getID());
OPENFLUID_DisplayInfo ("TestUnits #" << TU->getID());

OPENFLUID_LogWarning ("This is a warning message for " << "TestUnits #" << TU->getID());
}

return DefaultDeltaT;

The messages logged to file are put in the openfluid-messages. log file placed in the simulation
output directory. This file can be browsed using the openfluid-logexplorer program or using the
OpenFLUID-Builder application.

6.10.2 Errors from simulators

Simulators can raise errors to notify the OpenFLUID framework that something wrong or critical had hap-
pened. An error stops the simulation the next time the OpenFLUID framework has the control.

Errors can be raised using OPENFLUID_RaiseError

Example:

void checkConsistency ()

{
double TmpValue;
openfluid::core::SpatialUnit«* SU;

OPENFLUID_UNITS_ORDERED_LOOP ("SU", SU)
{
OPENFLUID_GetAttribute (SU, "MyAttr", TmpValue) ;

if (TmpValue <= 0)

OpenFLUID in a nutshell

46 Development of the simulator source code

{
OPENFLUID_RaiseError ("Wrong value for the MyProp distributed property on SU");
r irn false;

6.11 Debugging

Debugging macros allow developpers to trace various information during simulations.
They are enabled only when debug is enabled at simulators builds. They are ignored for other build types.

In order to enable debug build mode, the option ~-DCMAKE_BUILD_TYPE=Debug must be added to the
cmake command (e.g. cmake <srcpath> -DCMAKE_BUILD_TYPE=Debug).

Example of build configuration:

cmake .. —-DCMAKE_BUILD_TYPE=Debug

This debug build mode is disabled using the release build mode, with the option -DCMAKE_BUILD_TYPE=Release.
Simulators can emit debug information to both console and files using various methods

+ OPENFLUID_DisplayDebug to display debug messages to console only
+ OPENFLUID_LogDebug to log debug messages to file only

+ OPENFLUID_LogAndDisplayDebug to log and display debug messages simultaneously
Example:

openfluid: :base::SchedulingRequest runStep ()
{
OPENFLUID_LogDebug ("Entering runStep at time index " << OPENFLUID_GetCurrentTimeIndex());

return DefaultDeltaT;

Additional macros are available for debugging, see file debug.hpp:

6.12 Fortran 77/90 source code integration

The C++ - Fortran interface is defined in the openfluid/tools/FortranCPP.hpp file. In order to execute Fortran
code from a simulator, this Fortran source code have to be wrapped into subroutines that will be called from
the C++ code of the simulation function.

To help developers of simulators to achieve this wrapping operation, the FortranCPP.hpp file defines
macros. These macros allows calls of Fortran77 and Fortran90 source code. You are invited to read the
FortranCPP.hpp file to get more information about these macros.

Example of Fortran source code (FSubr.f90):

subroutine displayvector (Fsize,vect)

OpenFLUID in a nutshell

6.13 Miscellaneous helpers 47

implicit none

integer fsize,ifrom
real*8 vect (fsize)

write(x,*) ’'size’,fsize

write (x,*) (vect(i),i=1,fsize)
returr

end

Example of declaration block int the .cpp file (MySim.cpp):

BEGIN_EXTERN_FORTRAN
EXTERN_FSUBROUTINE (displayvector) (FINT xSize, FREAL8 xVect);
END_EXTERN_FORTRAN

Example of call of the fortran subroutine from the initializeRun method (MySim.cpp):

#include <openfluid/tools/FortranCPP.hpp>
openfluid: :base::SchedulingRequest initializeRun()
{

openfluid::core::VectorValue MyVect;

MyVect = openfluid::core::VectorValue(1l5,9);
int Size = MyVect.getSize();

CALL_FSUBROUTINE (displayvector) (&Size, (MyVect.getData()));

return DefaultDeltaT () ;

The compilation and linking of Fortran source code is automatically done when adding fortran source files
to the SIM_FORTRAN variable in the CMake.in.config file (See File CMake.in.config containing the build
configuration).

6.13 Miscellaneous helpers

The OpenFLUID API provides miscellaneous functions and classes to help simulators developpers in their
setup of data processing or numerical computation. They are available in various namespaces:

+ openfluid::tools
+ openfluid::scientific
+ openfluid::utils

In order to use these helpers, the corresponding headers files must be included in the simulator source
code.

As they are not detailed here in this manual, more informations about these helpers are available in the
provided header files (.hpp), located in the corresponding include directories.

OpenFLUID in a nutshell

48

Development of the simulator source code

OpenFLUID in a nutshell

Chapter 7

Documenting your simulators

The scientific documentation of simulators is very important to clearly understand the scientific concepts
and methods applied in source code of simulators. In order to facilitate the writing and maintenance of
these documentation, OpenFLUID provides the Sim2Doc system for simulators designers and developers.
The Sim2Doc system uses the simulator signature and an optional IATgX-formatted text to build a PDF or
HTML document. If present, the IATEX-formatted text is placed in the main file of the simulator source code,
into a single C++ comment block, and between the <sim2doc> and </sim2doc> tags.

Example of a part of source code including sim2doc informations:

/ *

<sim2doc>

This part of the documentation will be included in the

It can be formatted using \LaTeX and is fully compatible with all \LaTeX commands,
including tables, scientific formulae, figures, and many more.

</sim2doc>

*/
BEGIN_SIMULATOR_SIGNATURE ("example.simulator")

DECLARE_NAME ("Example simulator");
DECLARE_DESCRIPTION ("This simulator is an example");
DECLARE_VERSION("13.05");
DECLARE_STATUS (openfluid: :ware: : EXPERIMENTAL) ;
DECLARE_AUTHOR ("John", "john@foobar.org") ;
DECLARE_AUTHOR ("Dave", "dave@foobar.org") ;
DECLARE_AUTHOR ("Mike", "mike@foobar.org");

DECLARE_REQUIRED_PARAMETER ("meanspeed", "mean speed to use","m/s")

DECLARE_REQUIRED_ATTRIBUTE ("area","TU", "area of the Test Units","m")
DECLARE_USED_ATTRIBUTE ("landuse", "OU", "landuse of the Other Units","")

DECLARE_REQUIRED_VARIABLE ("varA[double]","TU","", "m")
DECLARE_USED_VARIABLE ("varB", "OU", "simple var on Other Units","kg")
DECLARE_PRODUCED_VARIABLE ("VarB[vector]", "TU", "vectorized var on Test Units", "kg")
DECLARE_UPDATED_VARIABLE ("VarCc","TU","","")

DECLARE_USED_EVENTS ("TU")

END_SIMULATOR_SIGNATURE

The final document can be generated using the OpenFLUID Sim2Doc buddy, included in the OpenFLUID
command line program. See also Buddies for available options.

50 Documenting your simulators

Example of generation of the PDF document using Sim2Doc tool:

openfluid buddy sim2doc -o inputcpp=MySimFile.cpp,pdf=1

OpenFLUID in a nutshell

Part lll

Appendix

Appendix A

Command line options and environment
variables

A.1 Environment variables

The OpenFLUID framework takes into account the following environment variables (if they are set in the
current running environment):

+ OPENFLUID_INSTALL_PREFIX: overrides automatic detection of install path, useful on Windows
systems.

+ OPENFLUID_USERDATA_PATH: overrides the default user data home directory (set by default to
SHOME/ . openfluid on Unix systems)

+ OPENFLUID_TEMP_PATH: overrides the default OpenFLUID temporary directory, used by Open-
FLUID software components for temporary data.

* OPENFLUID_SIMS_PATH: extra search paths for OpenFLUID simulators. The path are separated
by colon on UNIX systems, and by semicolon on Windows systems.

+ OPENFLUID_OBSS_PATH: extra search paths for OpenFLUID observers. The path are separated
by colon on UNIX systems, and by semicolon on Windows systems.

A.2 Command line usage

Usage : openfluid [<command>] [<options>] [<args>]

Available commands:

* buddy : Execute a buddy. Available buddies are newsim, newdata, sim2doc, examples
« report : Display informations about available wares
» run : Run a simulation from a project or an input dataset

* show-paths : Show search paths for wares

Available options:

54 Command line options and environment variables

* —~help, —h : display this help message

+ —version : display version

A.2.1 Running simulations

Run a simulation from a project or an input dataset.
Usage : openfluid run [<options>] [<args>]

Available options:

* ~help, —h : display this help message
+ —auto—-output-dir, -a:create automatic output directory
*+ —clean-output-dir, -c: clean outputdirectory before simulation

+ -max-threads=<arg>, -t <arg> : set maximum number of threads for threaded spatial
loops (default is 4)

*+ —observers-paths=<arg>, -n <arg> : add extra observers search paths (colon sepa-
rated)

« —profiling, -k :enable simulation profiling
 —quiet, -qg: quietdisplay during simulation

* —simulators-paths=<arg>, -p <arg>:add extra simulators search paths (colon sepa-
rated)

+ —verbose, -v :verbose display during simulation
Example of running a simulation from an input dataset:
openfluid run /path/to/dataset /path/to/results
Example of running a simulation from a project.

openfluid run /path/to/project

A.2.2 Wares reporting

Display informations about available wares
Usage : openfluid report [<options>] [<args>]

Available options:

* —~help, —h : display this help message
« —1list, -1:display simple listinstead of report

*+ —observers-paths=<arg>, -n <arg> : add extra observers search paths (colon sepa-
rated)

* —simulators-paths=<arg>, -p <arg> :add extra simulators search paths (colon sepa-
rated)

OpenFLUID in a nutshell

A.2 Command line usage

55

« —with-errors, -e:show errored wares during search
Example of detailed reporting about available simulators:
openfluid report simulators
Example of reporting as a list about available observers:

openfluid report observers --list

A.2.3 Paths

Show search paths for wares
Usage : openfluid show-paths [<options>] [<args>]

Available options:

* —help, —h : display this help message

*+ —observers-paths=<arg>, -n <arg> : add extra observers search paths (colon sepa-

rated)

* —simulators-paths=<arg>, -p <arg> :add extra simulators search paths (colon sepa-

rated)

A.2.4 Buddies

Execute a buddy. Available buddies are newsim, newdata, sim2doc, examples

Usage : openfluid buddy [<options>] [<args>]

Available options:

* —help, —h : display this help message
* —buddy-help : display specific buddy help

« —options=<arg>, -o <arg> :setbuddy options

OpenFLUID in a nutshell

56

Command line options and environment variables

OpenFLUID in a nutshell

Appendix B

Datetime formats

OpenFLUID uses the ANSI strftime() standard formats for date time formatting to and from a format string.
As an example, this format string can be used in CSV observer in parameters to customize date formats.
The format string consists of zero or more conversion specifications and ordinary characters. A conver-
sion specification consists of a % character and a terminating conversion character that determines the
conversion specification's behaviour. All ordinary characters are copied unchanged into the array.

For example, the nineteenth of April, two-thousand seven, at eleven hours, ten minutes and twenty-five
seconds formatted using different format strings:

e %d/%m/%Y %$H:%$M:%$Swillgive 19/04/2007 10:11:25
* $Y-%m—-%d $H.%Mwill give 2007-04-19 10.11

o SY\ESM\tSA\tSH\tSM\t %S will give 2007 04 19 10 11 25
List of available conversion specifications:

* %a : locale's abbreviated weekday name.

* %A : locale's full weekday name.

* %b : locale's abbreviated month name.

* %B : locale's full month name.

* %oc : locale's appropriate date and time representation.

* %C : century number (the year divided by 100 and truncated to an integer) as a decimal number
[00-99].

* %d : day of the month as a decimal number [01,31].

* %D : same as %m/%d/%y.

* %e : day of the month as a decimal number [1,31]; a single digit is preceded by a space.
* %h : same as %b.

* %H : hour (24-hour clock) as a decimal number [00,23].

* %l : hour (12-hour clock) as a decimal number [01,12].

58

Datetime formats

%j : day of the year as a decimal number [001,366].

%m : month as a decimal number [01,12].

%M : minute as a decimal number [00,59].

%n : is replaced by a newline character.

%p : locale's equivalent of either a.m. or p.m.

%r : time in a.m. and p.m. notation; in the POSIX locale this is equivalent to %l:%M:%S %p.
%R : time in 24 hour notation (%H:%M).

%S : second as a decimal number [00,61].

%t : is replaced by a tab character.

%T :time (Y%H:%M:%S).

%u : weekday as a decimal number [1,7], with 1 representing Monday.

%U : week number of the year (Sunday as the first day of the week) as a decimal number [00,53].

%V : week number of the year (Monday as the first day of the week) as a decimal number [01,53]. If
the week containing 1 January has four or more days in the new year, then it is considered week 1.
Otherwise, it is the last week of the previous year, and the next week is week 1.

%W : weekday as a decimal number [0,6], with 0 representing Sunday.

%W : week number of the year (Monday as the first day of the week) as a decimal number [00,53].
All days in a new year preceding the first Monday are considered to be in week 0.

%X : locale's appropriate date representation.

%X : locale's appropriate time representation.

%y : year without century as a decimal number [00,99].

%Y : year with century as a decimal number.

%Z : timezone name or abbreviation, or by no bytes if no timezone information exists.

%% : character %.

OpenFLUID in a nutshell

Appendix C

String representations of values

OpenFLUID values can be converted into strings, using the following representations

C.1 Simple values

Representation of simple values is trivial. In OpenFLUID, it is based on classical string representations.

C.1.1 BooleanValue

Values of BooleanValue type are converted into the t rue or false string.

C.1.2 IntegerValue

Values of IntegerValue type are converted into their textual representation. As an example, the value 192
will be converted to the 192 string.

C.1.3 DoubleValue

Values of DoubleValue type are converted into their textual representation. As an example, the value 17.37
will be converted to the 17. 37 string.

C.1.4 StringValue

Since values of StringValue type are natively stored as string, they are not converted and represented as
they are.

C.2 Compound values

Representation of compound values requires a more complex representation schema. In OpenFLUID, it is
based on the JSON data format without any space or newline.

60 String representations of values

C.2.1 \VectorValue

Values of VectorValue type are converted using the JSON notation for vectors which is a comma separated
list of values enclosed by an opening square bracket and a closing square bracket.

As an example, the following vector
[15 196 0.005 1.0 25899 |

will be converted intothe [1.5,19.6,0.005,1.0,258.99] string.

C.2.2 MatrixValue

Values of MatrixValue type are converted using the JSON notation for matrix which are considered as a
vector of vector(s).

As an example, the following matrix
1.5 19.6 0.005
2.0 1.0 258.99

will be converted intothe [[1.5,19.6,0.005],[2.0,1.0,258.99]] string.

C.2.3 MapValue

Values of MapValue type are converted using the JSON notation for objects which is a comma separated
key-value list enclosed by an opening curly bracket and a closing curly bracket.

As an example, the following map

keyl = 0.005
key2 = Taword”
key3 = [1.5 19.6 0.005 1.0 258.99]

will be convertedintothe {"key1":0.005, "key2":"a word", "key3":[1.5,19.6,0.005,1.0,258.99]}
string.

C.2.4 TreeValue

The string format for TreeValue is not stable and will be updated in further versions to match the philosophy
of string formats for other compound OpenFLUID values.

OpenFLUID in a nutshell

Appendix D

File formats for generators

D.1 Sources file

The sources file format is an XML based format which defines a list of sources files associated to an unique
ID.

The sources must be defined in a section delimited by the <datasources> tag, inside an
<openfluid> tag and must be structured following these rules:

* Inside the <datasources> tag, there must be a set of <filesource> tags

* Each <filesource> tag must bring an ID attribute giving the identifier of source, and a file
attribute giving the name of the file containing the source of data. The files must be placed in the input
directory of the simulation.

<?xml version="1.0" standalone="yes"?>
<openfluid>

<datasources>
<filesource ID="1" file="sourcel.dat" />
<filesource ID="2" file="source2.dat" />
</datasources>

</openfluid>

An associated source data file is a two columns text file, containing a serie of values in time. The first column
is the date using the ISO format YYYY-MM-DD ' T'HH:MM: SS. The second column is the value itself.

1999-12-31T12:00:00 -1.0
1999-12-31T23:00:00 -5.0
2000-01-01T00:30:00 -15.0
2000-01-01T00:40:00 -5.0
2000-01-01T01:30:00 -15.0

D.2 Distribution file

A distribution file is a two column file associating a unit ID (first column) to a source ID (second column).

62 File formats for generators

g W N
BN RN

OpenFLUID in a nutshell

	Foreword
	I Running simulations with OpenFLUID
	Usage of OpenFLUID applications
	Graphical Interface for simulations : OpenFLUID-Builder
	Command-line interface : openfluid
	Within the GNU R environment : ROpenFLUID
	Development environment : OpenFLUID-DevStudio

	Format of input datasets
	Overview
	Sections
	Model section
	Spatial domain section
	Datastore section
	Monitoring section
	Run configuration section

	Runtime variables in parameters
	Example of an input dataset as a single FluidX file

	II Development of OpenFLUID simulators
	Overview of an OpenFLUID simulator
	Simulator signature
	Simulator C++ class
	Constructor and destructor
	Mandatory methods to be defined

	Creation of an empty simulator
	Required tools for development environment
	Writing the signature
	Writing the C++ class for the simulator
	Building the simulator
	Complete example
	File ExampleSimulator.cpp containing the simulator source code
	File CMake.in.config containing the build configuration
	File CMakeLists.txt defining the build process

	Declaration of the simulator signature
	Identification
	Informations about scientific application
	Data and spatial graph
	Simulator parameters
	Spatial attributes
	Simulation variables
	Discrete events
	Extra files
	Spatial units graph

	Complete signature example

	Development of the simulator source code
	General information about simulators architecture
	Simulator methods sequence and framework interactions
	OpenFLUID data types

	Handling the spatial domain
	Parsing the spatial graph
	Querying the spatial graph
	Modifying the spatial graph

	Informations about simulation time
	Simulator parameters
	Spatial attributes
	Simulation variables
	Events
	Internal state data
	Runtime environment
	Informations, warnings and errors
	Informations and warnings from simulators
	Errors from simulators

	Debugging
	Fortran 77/90 source code integration
	Miscellaneous helpers

	Documenting your simulators

	III Appendix
	Command line options and environment variables
	Environment variables
	Command line usage
	Running simulations
	Wares reporting
	Paths
	Buddies

	Datetime formats
	String representations of values
	Simple values
	BooleanValue
	IntegerValue
	DoubleValue
	StringValue

	Compound values
	VectorValue
	MatrixValue
	MapValue
	TreeValue

	File formats for generators
	Sources file
	Distribution file

